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NOTATION

a(:) Radius of circle which is transformed to profile in the inner flow (singular-
perturbation problem)

at/z) Complex coefficients in inverse mapping function - f

? Vector potential for velocity

TIIR UST
CT = Thrust coefficient

(1/2) pU2 lrR2

E Profile shape function

Unit base vector, subscript gives direction

I' Inverse mapping function

fl Radius of lines of constant circulation in shed vortex sheet

12' Axial position of lines of constant circulation

g(eW Gage function in intermediate region

i, j, k Unit base vectors in the Cartesian reference frame

N Vector normal to surface, pointing into the flow field

n Unit vector normal to surface, pointing into the flow field

p Pressure

P(z) Pitch of blade-reference surface

P1(z) Pitch of shed vortex sheet at lifting line

q Velocity vector

q0 Velocity vector far upstream

R Propeller radius

r = (x, y, z) Position vector of field point

s Position vector on blade surface

T Thrust of propeller

_ti Tangent vector to surface, subscript denotes direction

U Magnitude of velocity component along propeller axis

u Component of induced velocity, subscript gives direction, superscript gives
order of term in expansion

Vn (z) Equivalent free-stream velocity for nth term problem in inner flow
(singular-perturbation problem)

W(•) Propeller warp, angular position of blade-reference line

x Cartesian component of position vector along axis of rotation, pointing
downstream

"x/e Inner variable

Sx/g Intermediate variable
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Cartesian component of position vector

=.v/ Inner variable

y = Intermediate variable

Z Number of blades

z Cartesian component of position vector pointing along upward vertical

rto{Z) Angle of zero lift of two-dimensional section

c4/~z) Angle of attack of nth term inner problem
U

ta'n- Pitch of incoming flow at lifting line

F = q dr Circulation enclosed by contour

-B - Jump in potential across blade surface; local circulation

yt' l, ) Chordwise component of velocity difference across the blade

Gage function in outer flow

E Thickness- or camber-to-chord ratio, small parameter in regular-perturbation
problem

Chord-to-diameter ratio, small parameter in singular-perturbation problem

•=fl- C- + f 2 e- 0 Position vector of lines of constant circulation in shed vortex sheet

0 tan"1 -Y Angular coordinate in cylindrical reference frame
z

2irb
0b = Z Angular coordinate of propeller blade-reference linez

A Vorticity vector

/AN ) Gage function for matching to order N

A = "I + 02 Radius in profile plane, inner flow

Pn(f) Gage function in inner flow

ti Profile coordinates, subscript denotes direction

p Fluid density

a Component of velocity difference across blade

0i = ie Inner variable for ti

4) Scalar potential for velocity, expressed in inner variables

Scalar potential for velocity, expressed in outer variables

ýoB (z) Pitch angle of profile section, measured at constant z

Pp (z) Pitch angle of blade-reference surface, measured on cylinder of radius [
+ + Average value of 0 across a surface
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-- -"Rotational velocity of propeller, E2 in radians per unit time, E > 0 for right.
hand rotation

Radial coordinate in cylindrical reference frame

.o=tn1 o2
Co tan Angular coordinate in profile plane, inner problem

6?( G5) Propeller rake, axial displacement of blade-reference line from propeller plane
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ABSTRACT

For steady motion of a propeller operating in an inviscid fluid having an unbounded
irrotational flow field, an expression for the velocity potential (in excess of the body
motion) is derived in terms of the boundary values. From this expression perturbation so-
lutions are determined-one for small thickness-or camber-to-chord ratio and one for small
chord-to-diameter ratio.

The first problem (lifting-surface theory) is a regular-perturbation problem, and the
second (lifting-line theory) is a singular-perturbation problem which requires construction of
matched asymptotic expansions. Two terms of each series are found. Numerical techniques
are not discussed. The outer solution for the lifting line is the same as that published in
the literature. The formal lifting-surface analysis differs from other developments in several
ways. The most important of these is that for propellers with variable pitch, warp, and
rake, the normal to the blade has a radial component which requires consideration of the
radial velocity in determining the blade shape. For the case considered the sign of the con-
tributions in the inner radii differ from the outer radii values; thus, this additional term
might cause little effect on thrust but could be important for cavitation performance. A
design procedure is discussed which involves only quantities appropriate for the lifting-
surface analysis.
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The research reported here is a revised version of a Ph D thesis submitted to the Naval Architecture

Department of the University of California, Berkeley Campus, in March 1972. Most of the work was

accomplished while participating in the U.S. Navy Integrated Advanced Training Program, and it was com-

pleted with funds from the General Hydromechanics Research Program under SROZ30101, Task 00103

sponsored by the Naval Ship Systems Command, SHIPS 03412B, Work Unit 1-1544-263.
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INTRODUCTION

A-OBJECTIVE

Calculations pertaining to lifting bodies are based on linearized versions of the mathematical model

used to describe the flow field about such objects. The traditional names for the two approximations

used are lifting-surface and lifting-line. Each of these is associated with a different small parameter.

These parameters are discussed in Section B.

Until recently, developments in the linearized theory have usually been presented on an

intuitive basis, rather than on a formal mathematical basis. In wing theory, the formal linearization pro-

cedures have not altered the lower-order theory significantly; however, they have permitted higher-order

effects to be calculated. Perhaps the best example of the formalization of the previous intuitive procedure

1



is the lifting-line theory presented by Friedrichs and Van Dyke.2 In particular, Van Dyke showed that

the integral equation could be simplified to a quadrature and that higher-order terms could be found. The

contribution of Friedrichs and Van Dyke will be discussed further in later paragraphs and are mentioned

here as an example of the formalization.

To date, a similar formal development appropriate for propeller geometry has not been presented.

Accordingly, the objective of the present work is to develop the formal linearized solutions for propeller

lifting-surface theory and lifting-line theory.

B-REGULAR AND SINGULAR-PERTURBATION PROBLEMS

A hubless propeller has three characteristic lengths: the diameter, a representative chordlength,

and a representative thickness or camber. For lifting-surface theory, the ratio of thickness and/or camber

to either chordlength or diameter is the small parameter, and the exact formulation is implicity expanded

in a perturbation series. Such a series is herein called a regular-perturbation series, since useful information

can be obtained without further analysis. However, the resulting formulation is not uniformly valid since

it fails at the leading edge. The lifting-surface equations are derived in Chapter 3.

Instead of the thickness and camber ratio being considered small, the chord-to-diameter ratio can

be taken as the perturbation parameter. This leads to lifting-line theory which is the subject of Chapter 4.

Unfortunately a vanishing chordlength leads to a singular-perturbation problem as opposed to the

regular-perturbation problem in lifting-surface theory. It is often sufficient to distinguish between them by

defining the regular problem as that for which the order of the governing equations and the number of

boundary conditions remain fixed as the parameter goes to zero. This definition is adopted here, although

an additional requirement is violated. The additional requirement is that the resulting formulation must be

uniformly valid throughout the flow field. As already mentioned, the point of view adopted here is that

useful information can be obtained from the regular-perturbation series without consideration of the

singular region.

1Friedrichs, K.O., "Special Topics in Fluid Dynamics," New York University (1953); also published by
Gordon and Breach, New York (1966). (A complete listing of references is given on page(s) 115).

2 Van Dyke, M., "Lifting Line Theory as a Singular Perturbation Problem," Archiwum Mechaniki
Stosowanej, Vol. 3, No. 16, pp. 601-614 (1964).

A singular region can be anticipated since the formulation requires a derivative of the shape function.
Although the shape relative to the reference surface is uniformly small, the derivative of the thickness
function is infinite at the leading edge and small away from it.
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For a singular-perturbation problem, the order of the governing equation is decreased, and/or one

or more of the boundary conditions has to be discarded. In problems involving a lifting body of small

chordlength, the limiting process as the chordlength goes to zero replaces the body by a lifting line, and,

hence, the body boundary conditions cannot be applied. (The order of the equations remains unchanged.)

To regain the details of the flow near the body, this region must be magnified by stretching the

coordinates. The flow field near the body is calculated in these stretched variables and must be matched

to the flow determined for the lifting line. The mathematical techniques involved in the analysis are

explained by Van Dyke, 3 Kaplun, 4 and Cole. 5

The first application of singular-perturbation concepts to wings of finite span was made by

Prandtl.6 Later, Friedrichs1 formalized the concept of inner and outer regions and derived Prandtl's inte-

gral equation for circulation. Van Dyke2 obtained higher-order terms in the perturbation series and showed

that the circulation was obtained as a quadrature rather than from an integral equation. A singular-

perturbation solution has also been obtained for a swept wing by Thurber 7 and for a nonplanar wing by

Rotta.8 The formal perturbation series assume zero thickness. Van Dyke2 compared his calculations

with results from exact theory for the total lift of elliptic wings and found good agreement for aspect

ratios as low as about 2.7. He was able to identify terms in the solution which gave streamline curvature

and which slightly modified the angle of attack.

For marine propellers the chord-to-diameter ratio is about unity, and the thickness-to-chord ratio

is about one-tenth. One intuitively expects then that the lifting-surface formulation will be more accurate

than the lifting-line theory for the same number of terms.

C-DESIGN AND PERFORMANCE PROBLEMS

In the present work a distinction is made between the design problem and the performance-

evaluation problem. This distinction does not apply to the mathematical formulation but to the application

3Van Dyke, M., "Perturbation Methods in Fluid Mechanics," Academic Press, Inc., New York (1964).
4 Kaplun, S., "Fluid Mechanics and Singular Perturbations," Edited by P.A. Lagerstrom, et al., Academic

Press, Inc., New York (1967).

5 Cole, J.D., "Perturbation Methods in Applied Mathematics," Blaisdell (1968).
6 Prandtl, L.; "Application of Modern Hydrodynamics to Aeronautics," National Advisory Committee

for Aeronautics Report 116 (1921).

7Thurber, J.K., "An Asymptotic Method for Determining the Lift Distribution of a Swept-Back Wing of
Finite Span," Communications on Pure and Applied Mathematics, Vol. 18, pp. 733-756 (1965).

8 Rotta, N.R., "The Non-Planar, Moderate Aspect Ratio, Subsonic Winds," Ph.D. Thesis, New York
University, University Microfilms 69-4576 (1968).
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of theoretical results since certain quantities are assumed known in one problem while they would be

unknown in the other.

In the typical design problem, one specifies the blade loading, the diameter, number of blades,

blade outline and hub details. One seeks the blade-section thickness, camber and pitch angle for operation

in a given flow field. Variations often occur in the specifications; in early design procedures, the camber-

line shape was specified, and the radial magnitude needed to obtain a specified thrust was sought. In some

modern design techniques, the spanwise and chordwise shape of the loading function as well as the thrust

is specified, and the camberline shape is to be calculated. In both of these design problems, the thickness

distribution is specified from strength and cavitation considerations. When the thickness distribution and

loading function are specified, the design calculations become quadratures in the lifting-surface problem.

This point is elaborated in Chapter 3. Recently techniques for determining the thickness distribution from

a specified pressure distribution have been developed by Hille.9 This would allow a design problem for

which the total pressure distribution was specified and for which the thrust and geometry would be calcu-

lated. However, the combination of strength considerations and the simplicity of the design based on

quadratures will probably insure continued usage of thickness specification.

In contrast to the possible variations for the design problem, the performance-evaluation problem

is straightforward to describe. The geometry is specified and from it one seeks to calculate some desired

quantities when the propeller operates in a given upstream flow field. A formal solution of this problem

is obtained as a quadrature in the lifting-line theory of Chapter 4. Unfortunately, an insufficient number

of terms in the series is determined to permit accurate calculations, so investigators in this area currently

attempt a solution of the integral equation from the lifting-surface analysis.

D-HISTORICAL DEVELOPMENT OF PROPELLER

THEORY AND STATE OF THE ART

Propeller theory is based on the principles applied to conventional wings, except that the pro-

peller geometry adds a significant complication. As discussed in Section B, Prandtl6 laid the foundation

for lifting-line analysis of wings. In the same paper he included an approximate solution for propellers

with small chord-to-diameter ratios. Several years later, Goldstein 10 obtained a more accurate solution for

a propeller lifting-line with a specific circulation distribution; however, it was not until more than two

decades later that MoriyaI 1 presented a derivation of the induced velocities at a lifting-line of an arbitrary

9 Hille, R., "Bestimmung der Dickenlinie von Propellerfiligelprofilen bel vorgegebener Druckverteilung,"
Report 262 of the Institut ffir Schiffbau der Universit~t Hamburg, West Germany (1970).

10 Goldstein, S., "On the Vortex Theory of Screw Propellers," Procedure Royal Society of London,
Series A, Vol. 123, pp. 440-465 (1929).

11 Moriya, T., "On the Integration of Biot-Savart's Law in Propeller Theory," (in Japanese), Journal of

the Society for Aeronautical Science, Japan, Vol. 9, No. 89, of 1015-1020 (1942); English translation in
Selected Scientific and Technical Papers by Tomijiro Moriya, Moriya Memorial Committee, University of
Tokyo, Japan, pp. 74-80 (1959).
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propeller. This derivation was written in Japanese and went unnoticed for many years. Previous to

Moriya's work, Kawada 12 had derived the potential for an infinitely long vortex filament which Lerbs13

used to develop charts useful in design. Since the work of Lerbs, only minor refinements have taken place

in lifting-line theory. A derivation of the lifting-line equations and explanation of the numerical techniques

used in their evaluation are given by Morgan and Wrench. 14

Even while development of the lifting-line theory was in progress, it was recognized that marine

propellers were too broad for direct application of the lifting-line results. Efforts were devoted to finding

correction factors which would allow use of the lifting-line results by modifying the propeller design so that

they would actually deliver the required thrust. The calculation of such correction factors was quite

tedious, and a considerable amount of simplification was incorporated. Ludwieg and Ginzel 1 5 derived an

approximate correction factor for wide-bladed propellers which was extensively used before high-speed
computers made possible more accurate calculations for the individual design. Strscheletzky 1 6 presented a

basis and some numerical results 17 for a general lifting-surface theory; however, it was not until the use of

computers became popular in the early 1960's that lifting-surface calculations became practical. Typical of

12 Kawada, S., "Induced Velocity by Helical Vortices," Journal of Aeronautical Sciences, Vol. 3, pp. 86-

87 (1936).

13 Lerbs, H.W., "Moderately Loaded Propellers with a Finite Number of Blades and an Arbitrary Distri-

bution of Circulation," Society of Naval Architects and Marine Engineers Transactions, Vol. 60, pp. 73-123

(1952).
14 Morgan, W.B. and J.W. Wrench, "Some Computational Aspects of Propeller Design," Methods of

Computational Physicis, No. 4, pp. 301-331, Academic Press, Inc., New York (1965).

1 5 Ludwieg, H. and I. Ginzel, "Zur Theorie der Breitblattschraube," Aerodynamische Versuchsanstalt,

GUttingen, Report 44/A/08 (1944); see Ginzel, G.I., "Theory of the Broad-Bladed Propeller,?" Aeronautical
Research Council, Current Papers 208 (1955).

16 Strscheletzky, M., "Hydrodynamische Grundlagen zur Berechnung der Schiffsschrauben," Verlag G.

Braun, Karlsruhe, West Germany (1950).
17 Strscheletzky, M., "Berechnungskurven f5r dreiflulgelige Schiffsschrauben," Verlag G. Braun, Karlsruhe,

West Germany (1955).
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the lifting-surface investigations are the analyses presented by Yamazaki 18-2 4 Sparenberg, 2 5 Kerwin, 2 6 ,2 7

Kerwin and Leopold, 2 8 ' 2 9 Pien,30 Pien and Strom-Tejsen, 3 1 Hanaoka,3 2 and Murray. 3 3 Reviews of many

1 8 Yamazaki, R., "A Study on Screw Propellers," Memoirs of the Faculty of Engineering, Kyushu
University, Japan, Vol. 19, No. 1, pp. 1-75 (1960).

19Yamazaki, R., "On the Theory of Screw Propellers," Fourth Symposium on Naval Hydrodynamics
(1962).

2 0Yamazaki, R., "On the Theory of Screw Propellers," Memoirs of the Faculty of Engineering, Kyushu
University, Japan, Vol. 23, No. 2, pp. 97-112 (1963); corrected version of 1962 paper.

2 1Yamazaki, R., "On the Theory of Screw Propellers in Non-Uniform Flows," Memoirs of the Faculty of
Engineering, Kyushu University, Japan, Vol. 25, No. 2, pp. 107-174 (1966).

2 2 Yamazaki, R., "On the Propulsion of Ships in Still Water (Introduction)," Memoirs of the Faculty of
Engineering, Kyushu University, Japan, Vol. 27, No. 4, pp. 187-220 (1968).

2 3 Yamazaki, R., "Theory of Unsteady Propeller Forces," Seventh Symposium on Naval Hydrodynamics,
Rome (1968).

24 Yamazaki, R., "On the Theory of Unsteady Propeller Forces," Memoirs of the Faculty of Engineering,
Kyushu University, Japan, Vol. 28, No. 3, pp. 157-206 (1969).

2 5Sparenberg, J.A., "Application of Lifting Surface Theory to Ship Screws," International Shipbuilding
Progress, Vol. 7, No. 67, pp. 99-106 (1960).

2 6 Kerwin, J.E., "The Solution of Propeller Lifting Surface Problems by Vortex Lattice Methods,"
Massachusetts Institute of Technology, Naval Architecture Department Report (June 1961).

2 7 Kerwin, J.E., "Linearized Theory for Propellers in Steady Flow," Massachusetts Institute of Technology,
Naval Architecture Department Report (1963).

2 8 Kerwin, J.E. and R. Leopold, "Propeller Incidence Correction Due to Blade Thickness," Journal of
Ship Research, Vol. 7, No. 2, pp. 1-6 (1963).

2 9 Kerwin, J.E. and R. Leopold, "A Design Theory for Subcavitating Propellers," Society of Naval
Architects and Marine Engineers Transactions, Vol. 72, pp. 294-335 (1964).

3 0 Pien, P.C., "The Calculation of Marine Propellers Based on Lifting Surface Theory," Journal of Ship
Research, Vol. 5, No. 2, pp. 1-14 (1961).

3 1Pien, P.C. and J. Strom-Tejsen, "A General Theory for Marine Propellers," Seventh Symposium on

Naval Hydrodynamics, Rome (1968).
3 2 Hanaoka, T., "Hydrodynamics of an Oscillating Screw Propeller," Fourth Symposium on Naval

Hydrodynamics (1962).

3 3 Murray, M.T., "Propeller Design and Analysis by Lifting Surface Theory," International Shipbuilding
"-Progress, Vol. 14, No. 160,,pp. 433-451 (1967).
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of these investigations can be found in the paper by Wu3 4 and the books of Isay. 3 5 ' 3 6 Cox 3 7 has surveyed

the state of the art for subcavitating propeller design and concludes that for propellers described as lightly*

to moderately* loaded, experimental results for propeller performance agree with the requirements set in the

design procedure. (Since the design procedures are based on inviscid flow, viscous corrections must be made.

Presently this is done on an empirical basis.) Cox points out that research is still needed in steady-flow

design theory to extend the theory to heavily loaded propellers. The present work contributes to the heavily

loaded design problem since the lifting-surface theory of Chapter 3 is carried out to second order.

While these design theories were being developed, the problem of predicting the performance was

also being investigated. Kerwin 3 8 calculated the performance of a series of propellers over an operating

range, using approximate curved-flow corrections derived for use in design. Differences of 10 percent, com-

pared with experimental results, were found, although occasionally excellent agreement was obtained.

Analyses of the lifting-surface formulations to predict performance from the geometry have been

attempted since Kerwin's investigation. To date most of these investigations have not compared predictions

with experimental results. Yamazaki 1 9 ,20 made some comparisons with experiments, and he concluded

good agreement when the pitch-to-diameter ratio was small. Murray 3 3 calculated the performance of pro-

pellers he had previously designed and found discrepancies between the calculations. For one propeller the

predicted and design value of the thrust differed by 8 percent. Isay and Armonat 3 9 calculated

3 4 Wu, T.Y., "Some Recent Developments in Propeller Theory," Schiffstechnik, Vol. 12, No. 60, pp. 1-11
(1965).

3 5 Isay, W.H., "Propellertheorie, Hydrodynamische Probleme," Springer-Verlay, Berlin (1964).

3 6 Isay, W.H., "Moderne Probleme der Propellertheorie,'Springer-Verlag, Berlin (1970).

3 7 Cox, G.G., "State-of-the-Art for Subcavitating Propeller Design Methods," Appendix II of the Report of
the Propeller Committee, 12th International Towing Tank Conference, Rome (1969).

3 8 Kerwin, J.E., "Machine Computation of Marine Propeller Characteristics," International Shipbuilding
Progress, Vol. 6, No. 60, pp. 343-354 (1959).

39 Isay, W.H. and R. Armonat, "Zur Berechnung der Potentialtheoretischen Druckverteilung am
Fliigelblatt eines Propellers," Schiffstechnik, Vol. 13, No. 67, pp. 75-89 (1966).

*Lerbsl 3 defines loading ranges based on the importance of the trailing-vortex position in the calcu-

lations of induced velocities at the lifting line.
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.40

blade-pressure distribution hut made no comparisons with experiments. Sugai made extensive calculations

of' blade pressure distributions, thrust coefficient, and comparative camberline studies but did not compare

his results with experiments.

None of the perfornance evaluation studies mentioned previously included thickness effects. All

were linearized formulations, although YamazakJ18-21 formulated a theory which did not explicitly

require linearization but did require zero thickness. Later papers by Yamazaki 2 2 "2 4 included thickness

effects but were based on linearized formulations. He also gave equations governing the position of the shed

vortex sheet. In each case described, evaluation of the numerical formulation usually required further

approximation. The linearization and approximations point out the complexity of the problem resulting

from the geometry of the propeller and its shed vortex sheet.

Other problems in propeller theory which are being investigated concern unsteady effects and

viscous effects. Study of these two aspects of propeller theory is still in its infancy, and relatively few

papers have been presented. Most of the literature on unsteady effects can be found in Yamazaki,21-24

Pien and Strom-Tejsen,31 and Tsakonas and Jacobs.4 1 Several references concerning boundary layers

applicable to propeller blades can be found in Armonat. 4 2 Since these two areas are not covered in the

present work, no further details of these investigations will be given.

E-STATEMENT OF THE PROBLEM

It is appropriate at this point to define the problem to be considered; the flow field of a hubless

propeller with Z identical, equally spaced, blades operating in an unbounded, inviscid, incompressible fluid.

The rectilinear and angular velocity are coaxial and constant. The exact lifting-surface theory is first

formulated without further restrictions; however, the singular-perturbation problem is further restricted in

geometry. Experience with wings, Van Dyke, 2 Thurber, 7 and Rotta,8 indicates that more terms can be

calculated for the simplest geometry, i.e., without sweep and dihedral. Accordingly, the blade should be

neither raked nor warped (these terms are defined in Chapter 1). The reason for this restriction is explained

in Chapter 4.

The usual assumptions (Lerbs)13 about the significant interaction effects of importance to the

position of the shed vortex sheet are not made in the lifting-surface analysis. The position of the vortex

sheets can be taken into account as the perturbation solutions evolve. An approximation is made in the

lifting-line analysis which corresponds to moderately loaded theory.

4 0 Sugai, K., "Hlydrodynamics of Screw Propellers Based on a New Lifting Surface Theory," Selected
Papers from the Journal of the Society of Naval Architects of Japan, Vol. 4, Tokyo, pp. 96-106 (1970).

4 1Tsakonas, S. and W.R. Jacobs, "Propeller Loading Distributions," Journal of Ship Research, Vol. 13,
No. 4, pp. 237-257 (1969).

4 2 Armonat, R., "Untersuchung der Druckverteilung eines Propellers unter Berficksichtigung
grenzschichtbedingter Massstabseffekte," Schiffstechnik, Vol. 16, No. 81, pp. 41-54 (1969).
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F-DESCRIPTION OF CONTENTS

Because the geometry plays such an essential role in propeller theory, the first chapter is devoted to

an examination of the geometrical specification of a propeller blade. The normal to a blade is determined,

and certain differentials are examined. The findings are used in later chapters.

Since no derivation of the exact potential function associated with the finite dimensions of the

propeller could be found in the published literature, an expression has been formulated in terms of boundary

values in Chapter 2. By a straightforward linearization, the regular-perturbation problem has been obtained

in Chapter 3. The applications to both design and performance calculations is discussed. The

perturbation solution is carried out to second order. Although the performance calculations result in an

integral equation in the regular-perturbation problem, in Chapter 4 the performance problem is considered

from the viewpoint of singular perturbations, and a quadrature results. Two terms in the series have also

been calculated in this analysis.

In Appendix A, an integral expression for the potential of a lifting-line has been derived from the

Biot-Savart Law. (Although this expression can be integrated in terms of known functions, the nested

infinite series which result are not thought to be practical for computation.) In Appendix B the intermediate

expansion of the outer potential is obtained. This expansion is used in Chapter 4.
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CHAPTER 1

PROPELLER GEOMETRY

The details of propeller theory are considerably more complicated than wing theory because of the
geometry. In this chapter, the analytical specification of the blade shape is developed, and certain ex-

pressions needed later in the analysis are obtained. First the coordinate systems are described, and the

relations between them are derived. In addition, the normal to the blade is found. In another section, the

blade sections are discussed, and the small parameters (thickness- and camber-to-chord ratio or chord-

diameter ratio) are explicitly considered in the expressions for the derivatives appearing in the normal. In

the last section, the gradients of functions expressed in these coordinate systems are obtained.

A-COORDINATE SYSTEMS AND BLADE

GEOMETRY

To describe the flow field quantitatively, two right-handed coordinate systems are used, both

attached to the moving propeller. The first of these is a Cartesian reference frame (x,y,z) with z pointing

away from the axis of rotation along a reference line in the blade and with x pointing along the axis of

rotation with positive displacement measured downstream from the propeller. The second system is cy-

lindrical polar coordinates (C, O,x). Radial distances are measured from the axis of rotation in a (y,z] plane,

and 0 is measured from the z axis in the clockwise direction looking along the positive x axis; see Figure 1.

z

0 
\

/

\R j

Figure 1 - Coordinate Reference Frames
for Stationary Blade

Unit base vectors in the (x,y,z) system are the usual i•j,k.) and base vectors in the (aO,x) system are

denoted by (eC, f O, o), respectively, where
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sin- si'0 j_+ cos 0 k

and (1-I)

e o =-cos 01-sin Ok

In general, blade-section offsets for propellers are measured from a reference line lying on a cy-

linder of constant radius. This viewpoint is adopted for some of the analyses (Chapters 2 and 3) but for

another portion of the work (Chapter 4) a slightly different viewpoint is necessary. This second viewpoint

is that the geometry is defined for sections cut by a plane at constant z on the reference blade (the reference

blade is the one which lies as close as possible to the z-axis). Although a set of unit orthogonal reference

vectors is assigned for each viewpoint, neither system is an orthogonal curvilinear coordinate system, except

for a special case in the second system. (The orthogonal coordinate system with the cylindrical surface

would be cylindrical polar coordinates.)

For the sections defined on a right circular cylinder, the blade-section reference line on the surface of

the cylinder is called the geometric pitch line. It makes an angle ýop(•) with the y,z plane. The geometric

pitch line usually lies along the nose-tail line, which is a line on the cylindrical surface joining the leading

point and the trailing point of the blade section cut by the cylinder. Another important line is the blade-

reference line (also called stacking line) which is defined as the line through an approximate datum point at

each radius. The datum point is usually on the nose-tail line and generally will be the midchord point. The
27rb

blade is raked when the blade-reference line is given by x = R(o); 0 = 0b -= (b , 1,... Z - 1).

When the reference line is given by 0 = 0b + W(&$), x = 0, the blade is said to be warped. A combination

of warp and rake is called skew; usually the displacement is along a helix which passes through a straight

line in the plane x = 0. On the cylindrical surface E = constant, a coordinate system (1' ý2' 13) is con-

structed with ý, on the surface of the cylinder and measured from the blade-reference line along the

constant pitch of the nose-tafl line. Positive t1 values point in the downstream direction. The variable t2

is normal to the t, axis and points in the upstream direction. Unit orthogonal reference vectors (el,e2 ,e.)

are in the (• 1 ,•2,V} direction, respectively, but the coordinate system is only locally orthogonal, i.e., these

are not the unitary base vectors described by Wills.4 3 The system is left handed to permit specification of

the blade-section geometry in the conventional two-dimensional orientation (positive camber in the positive

ý2 direction). A schematic of the blade-coordinate system is shown in Figure 2. Although the blade-section

reference line is shown as the nose-tafl line, it is not necessary in the following development and will not

always be used that way.

4 3Wills, A.P., "Vector Analysis with an Introduction to Tensor Analysis," Dover Publications, Inc., New
York (1958).
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In terms of the blade-reference system, the cylindrical polar coordinates are

+ cos 5Op () + t2 sin ýOp( (-)
o 0b + + (1-2)

x = + tj sin s, (a) - t2 cos s 1,

BLADE-REFERENCE
LINE

z

Vx

t/

/

Figure 2 - Blade Coordinate System

Hence the Cartesian expressions are
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X = ('i5ý) + t/sill ý01 ' t2 co P

v = - fsin b + W() + J (1-3)

z = Z cos O b + W( ; + "P+ Pp

One can express the position vector in these variables by substituting into the expression

r=xi+)'j+zk

and the unit base vectors in the t, and t2 direction can be found:

ar
el =-= sit, p-5°- cos 0 cos Op i - sin o cos L

sin fOpli+ COS SOp e0

(1-4)

Sr- - cos pOi - COs 0 sin p 4- sin 0 sin popk
.f 2 " .s$- c

=-cos OppL + sin ýOp e 0

where 0 is given in Equation (1-2).

The unit base vector in the c•5 direction is the unit cylindrical polar vector in the c3 direction. It is

given by Equation (1-1):

j= - sin 0 + k cos 0

(The partial of r with respect to Z will not give this value since the eSP f 2 base vectors are functions of C5.)

By construction e xe2 x -

The inverse of Equations (1-3) is

co sot b~7 tn W ) + (x-6?) sin

t2= sin op )/Y2 + z2 (tan,, (-) b - W) - (x-6) cos pJ ('-)

VIy'2 +z2

Blade sections are given by

t2 = E(t1 , •) (1-6)
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for

c2 ( <- Cl (I•

o<V<R

where c2( is the distance to the leading edge,

cl(iý) is the distance to the trailing edge, and

R is the propeller radius.

E is the sum of a single-valued (camber) and a double-valued (thickness) function which combine to describe

the offsets from the tj axis on the cylinder of radius CO. The function E is considered in detail later in this

chapter. Figure 3 shows the profile geometry.

t2

'" BACK (+ SIDE)

I QFAC E (S IDE) t,,,,

Figure 3 - Profile Geometry

A point on the surface of a blade is given as a function of two variables (t1, C) by

s =(L + t1 sin p- E cos pi

-c sin 0b + W + tl cos op + E sin °p, (1- 7)

+ c b+ W + cos 1 op + E sin IpP)k

Two tangent vectors on the blade surface are given by

14



as

(1-8)

a•
12=

see. e.g., Wills4 3 and a vector normal to the surface (but not a unit normal) is given by

N = +t 1 X t2  (1-9)

where the sign is positive on the suction or back side and negative on the pressure or face side.

The components of these vectors in the (iji,k) system are lengthy but when expressed in the

(f 1,c-•-2,.e_) system they are shorter. In particular, the normal is

Ai,~ aE

+ cos ýpp+ 7 sin (1-10)

+(dW (,Oj co p Esn

CO ýWý + (in ap ECo P)

For E = 0, the resulting expression for the normal is

A? -d-ll

sin Opcos

* dWo
+ cosL ýp w sin ýp

which is the normal to the helical surface of pitch angle ýVp( through the blade-reference line. Components

in the (i,j,k) directions can be found when Equations (1-4) and (1-1) are substituted into these expressions.

Previous investigators have assumed that the only significant contribution toN 0 was e2 . Note that

even for blades without rake or warp, an ew-component exists. This remaining term can be simplified by

expressing ýpp(Z) in terms of the pitch, P(Z). The pitch is the distance of axial advancement in one complete

revolution of a screw of pitch angle ýp (a):

15



P(2•)
tan ýp,(w) = -

Using this relationship, one finds

d•Op sin ppCos ýPpp d
dp il OCSOp _ dP _____

dw dco 27r ( + p2/41 1 2)

(1-12)

dP cos2 ýOp

dw" 27ra

Thus for helical surfaces of constant pitch, this component of the normal is zero. Since few modern pro-

pellers have constant pitch, this term must be retained.

For the second system of blade specification the sections are cut out by a plane at a given z value.

As will be explained in Chapter 4, neither rake nor warp is considered with this viewpoint. Hence the

blade-reference lines are the 0 b values and for the reference blade along the z axes, the nose tail line is on a

plane and forms an angle zpB(Z) with the y-direction. The coordinate system is similar to the previous one,

except that t1' t2 are measured in an x,y plane at a constant z value.

The Cartesian components are

x = t1 sin pB- t2 cos ýPB

y = - (t, Cos oB + t2 sin SOB) (1-13)

z=z.

Similar to the previous discussion, the unit vectors are

ar cos ýBefl si ýp-'BI

(1-14)
3 r

£2 =T2=- cos I-sin Iý
ar

and the third vector is the k vector such that k =- eI X f2 and here also k 9' ---.

The blade surface is here assumed to be given by

2 = E( 1 , z) (1-15)

where E is a sum of a double- and a single-valued function describing the thickness and camber distributions,

respectively.
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As before, a point onl the surface is found by substituting this expression in the ('artesian com-

ponents given by Equation (1-13), and two tangent vectors to the surface are found by differentiation. "lhe

cross product of these two tangent vectors gives a normal vector,

N= L 2- + I+( -+ h'] (1-16,
Sdz a at- dz k

This is similar to the expression for the normal where the section shape was measured on the surface of a

cylinder; however, the terms for the component normal to the template plane show marked differences.

B-SECTION GEOMETRY

In this section, the specific form of the shape function is examined. In general this shape function

can be written

t2 = E(lI t3)

where t3 is either the cylindrical radius or the z variable.

The blade shape is made up of a single-valued and a double-valued function. The single-valued

function is the camberline, and the double-valued function is the thickness. These functions can be con-

sidered separately.

First the thickness can be represented by

t2 =+ET (t], ts3)

where

=0

cI cf(• 3 ) and c2 = c2(t 3 ) are shown in Figure 3, and in general an = an(t 3 ). At the leading edge =c2'

and at the trailing edge t, = c1.

Often the same form is maintained spanwise and then an(ý3 ) = T(t3) an, where 7(ý3) is the thickness

to chord ratio and the an are now constants.

For the regular perturbation problem,

)= eT( 3) (1-18)

that is, the thickness is small relative to the chord. By assumption all derivatives remain of first order

although by inspection this breaks down at the leading and trailing edge, where at the leading edge

aET ao (1-19)

'/•1"2
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Even though this singularity is not compatible with the O() assumptions in the derivation,

solutions obtained by ignoring this discrepancy have been useful. Several techniques for improvement

(Friedrichs 1 and Van Dyke 3 ) are known but they usually break down after a few terms.

In the singular-perturbation problem, the chord length is the small quantity, and in this case it is

convenient to put

c = ýhl1 (t3)

c2 = h2 (V3) (1-20)

where 9 can be considered the ratio of maximum chordlength to diameter. In this case, the equation for

thickness becomes

ET=( .a2) {I Jhl } (1-21)ET 1(lv (ý-L ))' n=O an1(h, h2)

The normal vector involves derivatives of this function with respect to both t1 and ý3' First, the derivative

with respect to is

aET 12(h +.h2) - t , N an _ t,

h2 ) n(h-h)

(1-22)

+ -41") ( 4•-h2)N tnan L(hl-h2)] n-i

hi - h2 n=1

In Chapter 4, the form of this expression in inner or stretched variables is needed. Let the variable be a,

= 1/, then converting this to the stretched coordinate, one finds

aET l /2(h]+h2- 2 01 N n Ul \
--i h 2 an -1 h2,(h 1O) (01 -h 2 } n=O 2 2

/ (1-23)

+/h l.• nan h l

(h+ l1-h2) n=l -

This is entirely a zero-order term with respect to the chordlength parameter.
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Second, the derivative of the thickness function with respect to the variable is

T 1/2 -(eC C2)'+ t] (cl + c2 )' N a 1  n
"'C"VT ti) ( •1" c2) n=O 1c -'c2)

+ rcI"-ti)(•I'C 2  n a'2) (I d)2 (1-24)

(c1  - c2N 1 Nen

(c2 ) c2 )2 i n_ n, n-2

where the prime denotes derivative with respect to •3 When this is converted to the inner variable, it be-

comes

aET - (-hI h 2)'+ ul(hI + h2)" N n

W3 (aP t3) - 2 a'~ 7 7 nfjf~1 _ a]I-O) (a 1 - h2) n1=0 hI "2)

N /) (1 _h (1-25)
+( " h1 "o 1 )(o 1 "h2 )n a'

112)

(h1 - h2 " N / hJ2)
eVh-r)a-2)(hI - t,2)2 n flnan h ---h2 ) n-1

Hence, this expression remains of order F

For the camberline function, the appropriate expression is

t2 = Ec t•' 3)

where

Ecj'l, t2) bn ( ) n + ýlk (1-26)
(c 1 - C2 ) n=O c0 2

In some current design procedures, the shape of the camberline is computed at each radius, and in general the

coefficients in the summation are not a constant times the same function of t3 The derivatives of this

function follow the. same patterns as the thickness function. For the regular-perturbation problem, they are
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both the same order and for the singular-perturbation problem, the t1 derivative is of zero-order and the t3

derivative is of order T. For most camberline shapes, the t1 derivative is bounded.

C-DIFFERENTIALS EXPRESSED IN PROFILE COORDINATES

In some portions of later chapters, it is necessary to calculate the gradient of a function which is

given in the profile coordinate system. For the hypothetical functions J1 = J1 (t1' ý2 and J2 = J2 (t1j

t2' z), the gradient can be determined by straightforward application of the chain rule. Consider the

function J first.

atl atl ail-3 = i + - j + -- k (1-27)

ax ay az

where

-a il at ] + ail _L 2

ax ý1 a, a 2 ax
(1-28)

a= I a.,1
a,]la, 1,

=sin ýOp - -cos ýop 02

and the expressions for2- and L are obtained similarly but are more complicated. After arrangement

of terms, the expression becomes

ail ai l + e+ (cos ýOp (C-Ob-W)
a• ýl 2 L a• •

2d'p dW -- L all

d W d6?o il 1 - 9t . . .• •C OSp-d i op I(sin ýOp (O-Oh-W) (-9
da da d / 4

dW ddWpM
- - -I d. ýoP d--

dJYCO dV ýPj]

where (0 - 0b - W) is given in terms of (Q, ý2' Z3) in Equation (1-2).

For the Q1, t2, z) variables, a similar transformation gives
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a, a2 azJ2  d~pB aJ2  aj21VJ2 = "el + - e2 + T + 2"1• k (1-30)at,• at2 z dz at2

This expression is used in Chapter 4 as well as one for the Laplace equation expressed in the pro-

file coordinates (Q1, t2' z). From repeated application of the chain rule, one finds

n2  a2 j 2  a2 j 2  a2 j 2u x2 y2 2 2

ax2  ay2  atl' az2 l

a2 1 d OB' 2  2 a2 j 2  a 2 j 2  a

22 + ýJ t2 +t
3Z2  \dz at] 2 %2  a tj2

/d~PB 82 aj2  d2~p ai2  'J2]

\dz ) at a t2  Lz I at2

dB/ a2j2 a ý2  a2 J2
dz a•2az aýlaz, az2

Obviously, the Laplace equation involves the sum of the previous two equations. It has been broken up to

call attention to a feature of the expression for a2J2/1z 2 . This feature is that any scale change applied to

both ti and t2 cancels. This property is utilized in Chapter 4.
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CHAPTER 2
GENERAL FORMULATION

A-DESCRIPTION OF FLOW FIELD*

A Z-bladed propeller of finite radius R is assumed to be rotating with constant angular velocity 92

and to be advancing at a uniform rate U into an unbounded, inviscid, incompressible fluid; however, one

for which the Kutta condition is satisfied at the trailing edge. The propeller produces a thrust which

requires that the average pressure on one side of the blade, called either the back or suction side, is lower

than on the other, called either the face or pressure side. The Kutta condition requires that no flow cross

the trailing edge. The general flow pattern then is that fluid is pushed from the high-pressure side to the

low-pressure side around only the leading edge and the tips. The tip flow deflects the streamlines in the

vicinity of the tips toward the axis of rotation on the low-pressure side and away from the axis on the high-

pressure side. This flow behavior, together with the requirement of continuity in the pressure field, results

in a discontinuity in direction, but not magnitude, of the fluid velocity leaving the blades at the trailing

edge. This layer of fluid slip is called a vortex sheet.

The flow model thus consists of the lifting surface and the vortex sheet advancing and rotating into

still fluid.

B-GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

The unsteady flow field described in Section A can be made steady by considering the flow

relative to the coordinate systems rotating with the blade. In a rotating-coordinate system, the equations of

motion, e.g., Kochin, Kibel' and Roze44 Equation 2.7.8, are

q .gradq+Igradp=-2_2 Xq_ A2X(_qXr) (2-1)P

div q = 0 (2-2)

where q(r) is the velocity vector,

p is the pressure,

p is the density,

•-2 - Q is the angular velocity of the propeller for the assumed right-hand rotation shown in Figure 1,

r is the position vector of a point in the flow field.

This discussion is patterned after that given by Prandtl6 for planar wings.

44Kochin, N.E., et al., "Theoretical Hydromechanics," (Translation of Fifth Russian Edition), Interscience
Publications, Inc., New York (.1964).
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The flow field in the inertial reference frame is irrotational everywhere except on the boundaries.

In the rotating coordinate system the vorticity is given by

curlq =- 2 2=292i (2-3)

The boundary conditions are that the upstream velocity is specified; there is no flow through the

blade; the vortex sheet moves with the fluid, i.e., the normal velocity at the sheet is zero; and the velocity

at the trailing edge is finite (Kutta condition). If SB" represents the pressure side of the blades, SB+ the

suction side, Sv+ the continuation of SB+ onto the vortex sheet, SV- the other side of the vortex sheet,

and T(z) the trailing edge, then the boundary conditions become

q" q 0 = Ui + 92ae 0 as X + (2-4)

q . n = OforreSb (2-5)

q <+ ,,for re T (2-6)

where U is the advance velocity in the inertial reference frame

n is the normal pointing into the fluid

Sb = S1/+. ',SB+ ,-SB- LiS - and

b denotes one of the Z blades, b = 0,1, ... Z - 1

If the velocity is taken as

q =7 + V x B (2-7)

where B is the vector potential, and 0 is the scalar potential, then Equation (2-3) gives

vX( VX B) =2 S2

and Equation (2-2) gives

V2-= 0

If the boundary condition at upstream infinity is associated with B, an expression for B can be immediately

stated:

B = (2x- 0 U)e• (2-8)

where U must be a constant for this expression to satisfy Equations (2-3) and (2-4), and VX B = q0.

The symbolic vector notation is used for the differential operators in curvilinear coordinates.

**The velocity component U is commonly taken as a function of radius to approximate nonuniform in-
flow. One would expect such shear flows to be axially variable also. Shear flows imply vorticity, and
careful consideration should be given to the propagation of vorticity from upstream infinity to the propeller
and on downstream.
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The remaining unknown is now only the scalar function '1, and the problem can be reformu-

lated in terms of it. The boundary conditions are:

V7 - 0 as x -- o, .oo (2-9)

VO.n=-qo. n for reSb (2-10)

IvOPI<+-o for reT (2-11)

In addition the pressure is continuous across the vortex sheet.

The three simultaneous equations of motion described by Equation (2-1) have been replaced by a

single equation for the scalar potential 0 which depends only on the kinematics of the flow. The dynamics

of the flow enter only in the determination of pressure which can be obtained by integrating Equation (2-1).

The integration is performed by using the expansion formula

q . grad q =1/2V(q . q)- q X curl q

= 1/2V(q . q) - 2S2 X q (2-12)

and by noting that for 92-- 9i

2 X( X r) g22 S -,
. 'A2 , v(2-13)

2
Hence, Equation (2-1) can be written as

V(-q q+- &22 O)=0
2- - p 2

Since the expression is zero for all spatial derivatives, it must be constant. Thus

q 2 1.ý, K

2-- p 2  2

where K is a constant everywhere in the fluid.

Hence the pressure is

p=P {K+n2a 2 -2q. q} (2-14)

The condition that the pressure be continuous across the votex sheet can be expressed as

(q . s .÷ " qJr_ Sq .

or
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r cSv+-
(2q() + VO). o 0 (2-15)

LESV-

In the next section an expression for 0 is found which satisfies the boundary conditions in

Equations (2-9) through (2-11) and Equation (2-15).

C-SOLUTION IN TERMS OF BOUNDARY VALUES

The solution of Poisson's or Laplace's equation in a three-dimensional volume can be expressed

using Green's second identity; see, e.g., Tychonov and Samarski: 4 5

S 1 1 = 1 1
fff (OV (n. V 2 )d- (n" VO) dS (2-16)

IrI Ir' 6 r LI I

where v is the total fluid volume,

7, is the surface which bounds the volume, including the surface at 00 - ,

r' is the position vector, measured from a fixed point in the fluid,

n is the unit normal, pointing from the bounding surface into the fluid.

If 0 satisfies Laplace's equation, the volume integral is zero everywhere in the fluid, except at the point r'

0. This point can be excluded from the volume by enclosing it in a sphere.* Taking the limit of the sur-

face integral over the sphere* as the radius goes to zero, one finds the following standard formula

-4 ( V. V _- nj--n. V0 kdS (2-17)

where r is an arbitrary point in the fluid, and

s is a point on the boundary.

4 5 Tychonov, A.N. and A.A. Samarski, "Partial Differential Equations of Mathematical Physics," Vol. 1,
Holden-Day, Inc., San Francisco, Calif (1964).

*Tychonov and Samarski,45 for example, show that other shapes excluding the singularity are also
satisfactory as long as the maximum dimension of the excluded region goes to zero.
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It is necessary to know the value of ( on the boundary as well as in the flow field. That is, one

seeks

lira kr) = limy•ro+fe)-- Lr0o)

1r ro 7740
where r is a point in the flow field

ro is a point on the surface

e is an arbitrary vector pointing into the fluid from.r and the

+ sign is used whenro is on the ± surface

Two situations occur: one when.ro is a point on the boundary of a solid of finite thickness, and one when

.o is a point on a boundary, both sides of which are in the flow field, across which 0 is discontinuous. In

the second case, the limit r , o produces singularities in both sides of the surface.

For the first case, for whichro is on a single-sided surface, one finds*

+ OU o 1 Vck ds (2-18a)

and for the second case, for whichro is on a double-sided surface, one finds

0 + -+ n -. VOI ds (2-18b)
27riro Lro~

where the improper surface integral is obtained b•€ evaluating the integral over the bounding surface, ex-

cluding the region surrounding the pointro, and then by taking the limit as the maximum dimension of the

excluded region tends to zero.

Since the present problem is a second (or Neumann) boundary-value problem, it is important to

determine the values of the gradient of 0b on the boundary. To find this limit, the pointro is excluded from

the surface Z by surrounding it with different shapes s(ro, X), where X characterizes the dimensions of the

region. With the same notation as used previously, one seeks

lim VO7.r) = lim O (_ro + 7f) (VO)±
1 -0ro 77-+0

For a point on the boundary of a solid of finite thickness

rVn) 1 li Z0 rs ( d + (2-19a)
2ir.13IL

"Z-s(.ro,

*The ± superscripts here denote different sides of the surface as well as the limit operation when

appropriate.
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/im .L 3r - (1.•1 9a)

2 1r 3 ro -.• .. /il .K ] Cont'd

_,s(ro,X)

where n,) = n(r,), and 0, r

When s~r0 ,X) is the region of 2: interior to a right circular cylinder of radius X with axis n(, then K = 27r;

when sLr0,X) is the region of Z interior to a square of half-side Xt with axis no, then Ks = 4 24'2T, when

S(ro,ý is the region of 2; interior to a rectangle, two sides of which are distant X from.ro and the other two

sides of which are an arbitrary finite distance fromro, then Ks = 4. We call the first integral in Equation

(2-19a) a Cauchy principal-value integral.

For a point on a boundary in the flow field

1 lim -- (n VO) d(Vp)+ + ((Q-=2-- - [ L3

+I lim (21 _ 'ds27r 0 -r o (ro)) 1 r °s• _roS_ a

+ + +
K] 

(2-19b)

The limit operation indicated in Equations (2-19) is considered to define a singularity in the

mathematical literature (Tychonov and Samarski)45 while in the aeronautical literature (Mangler, 4 6 Ashley

and Landahl) 4 7 such forms are accepted. In Chapter 5, a form of the expression for velocity is obtained

for which only Cauchy principal values are needed so that numerical analysis can be performed on the more

convenient form.

The values of the gradient on the boundary are generally to be interpreted as VF(r)lr 1= (VF)+

This expression is not equal to VF(ro) = V(F±) since the normal components are not equal. Generally the

normal component is given by a separate boundary condition, and one need not explicitly consider the

distinction. Throughout the text the notation for differentials of functions known on the surface V(F+) is

indicated, rather than the field value evaluated on the body (VF)±. Although this notation sometimes

indicates a ridiculous result if interpreted literally, it is used since it permits a shorthand-like notation to be

developed.

4 6 Mangler, K.W., "Improper Integrals in Theoretical Aerodynamics," Aeronautical Research Council,

Current Papers 94 (1952).

4 7 Ashley, H. and M. Landahl, "Aerodynamics of Wings and Bodies," Addison-Wesley Publishing Co.,
Inc., Reading, Mass. (1965).
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The surface 2; consists of the Z bounding surfaces of SB %-, SV (where SB is the blade surface, and

Sv the shed vortex surface) and the surface for It -+ oa. At this point it is necessary to suppose that the

integral over the bounding surface at infinity gives at most a constant. (This supposition will be proven.)

Hence, to within this additive constant, the potential for the propeller can be written

4S s)n-s) . Vs Lr -_ Vd S (2-20)

where Sb is one of the M bounding surfaces

sb -sv÷ - SB÷ - SB. - sv.
The boundary condition in Equation (2-10) can be used to simplify Equation (2-20) since the

second part of the integral becomes

Sb -bs

qo* n d÷ • dS

sB L,• s• s(2-21)

The reduction in area in Equation (2-21) follows because q0 is continuous at S, and n (on Sv+) -n (on Sv-).

The normal on SV+ is directed oppositely to that on SV ., and hence Equation (2-20) can be written

•-•) 4§)v -VS

sB+ W, sB.
(2-22)

1Z-1 i
1rb=O ffS V-

8V

28



The circulation in a fluid is defined as the integral
r-F , .dl1

(q0 + V d (2-23)

where dl is the vector arc length along the closed curve which completely encircles the shed vorticity.

Sinceqo is a continuous point function, it contributes nothing to the integral in Equation (2-23). For a

curve which lies entirely within the irrotational flow except at the one point at which it cuts the shed

vortex sheet

P(rS) {i leSv (2-24)

Further simplification is possible by considering the continuous vortex sheet to be composed of lines of

constant circulation which leave the trailing edge of the blade at the point T(z).

In Figure 4, from curve C2 , the circulation about the blade at T(z) is given by

r(T(z)) = +(T(z)) - 0Y(T(z)) (2-25)

z

Figure 4 - Schematic of Vortex Sheet
for Determining Circulation

*The word circulation will be associated with the scalar jump in potential across a surface as in
Equation (2-24), and the word vorticity will be associated with the vector jump in velocity across a surface.
If A is the vorticity vector then A =n X(.q+ -_q)n X V (+- •' n X VI?, where ii is the + unit normal;
see Reference 48.

4 8 Milne-Thomson, L.M., "Theoretical Hydrodynamics," Fifth Edition, The Macmillan Company, New

York (1968).
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Now the circulation at r e S, is determined from the curve C1 . This curve is connected to C2 by the curves

C? and C4 lying along a line of constant circulation. Hence, the total curve is simply connected and

0=f JC .3dg + VA f. d4 l-+F(reSv)- (T(z))
C3  C4

(2-26)
fC V((P+ - 0-) . dt + IQr e Sv) - 17 T(z)) (-6

C3

By definition, C3 lies along a curve of constant circulation and from Equation (2-24), the integrand in

Equation (2-26) is

ar
vP.t =j - = 0 (2-27)

at,

where t1 is a unit vector along the lines of constant circulation. Hence

r(r e Sv) = F(T(zW) (2-28)

Conditions are sought which describe the position vector of this line of constant circulation which leaves

the trailing edge from the pointrT e T(z). To emphasize that this point is located at the blade, let it be

written z,, The position vector of the line of constant circulation can be described as
ý(= zOz, 0; 0bh*

=fl zO, 0; 0 b) Edo) + f 2 (zo, 0; Ob)i (2-29)

where z0 is the parameter describing the starting position of the line,

0 is the independent variable, and

2 irb
0b =- is the parameter describing the individual vortex sheets.

The functions fl(zO, 0; Ob) and f2(Zo, 0; Ob) are the radius and axial position of the line, respectively. The

parameter z 0 ranges from zero to the propeller radius, and the variable 0 ranges from the trailing edge

OTEdzo) to o. If ff = zo, then no contraction of the shed vorticity takes place.

To establish differential equations" governing the position of the line, Equations (2-10) and (2-15)

will be used together with the definition that the strength of the circulation is constant along the line. Since

the rate of change of " is zero along the line,

Alternatively, one could take " = o x; Ob). However, the usual representation given in Equation (2-29)
was more convenient.

**The derivation here parallels that given by Ciolkowski 4 9 and Thurber. 7

4 9 Ciolkowski, S.I., "The Swept-Back Wing," Ph.D. Thesis, New York University, University Microfilms
24,694 (1955).
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V dL-r) "- = ( (2-30)

Since the vortex sheet is actually continuous, the function 7(zO, 0) may be considered a function

of two independent variables which describe the surface. Lines of constant circulation are obtained by

holding z0 constant. Tangent vectors in the surface SV are found by constructing;

tI =-•-(2-31)

12 = a (2-32)

see, e.g., Wills.4 3

A vector normal to the sheet SV (but not a unit normal) is given by

aý aý
N =t 1 X t2 = -X - (2-33)

which is assumed to be non-zero.

Hence, Equation (2-10) can be expressed

(go+ . N = 0 (2-34)

Since p = 0 - 0.}, Equation (2-34) gives two equations:
reSv

vP-. N = 0 (2-35)

fN. [2qo + V{@#+ 0.} (2-36)

Let 4-{ + 4ý. Then Equation (2-36) is
!ESv

N. (2q0 + V4) = 0 (2-37)

Now Equation (2-15) can be written as

Vr. (qO + 1/2VVI) = 0 (2-38)

It would appear that, since only two unknowns, fl and f2, are sought, the scalar Equations (2-27) or (2-30)

and (2-37) would be sufficient to establish differentials of the trajectory. However, derivatives with respect

to z0 enter into the equations and are not desirable. For a more elegant form of the differential equation

for ', Equation (2-35) must be used.
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Equations (2-35) and (2-30) show that

VFX ( 1 XNI) = (vl .N) t 1 - (VP . tl)N= 0 (2-39)

Since Equation (2-39) is zero, any multiple of it is also zero. Hence,

(2q0 + V)X(V F X (1 XN)) = 0 (2-40)

In another form this equation is

(2q 0 + V 0) .(1XN)}I VP. [{2q+ VV) V]!

Equation (2-38) simplifies this equation to be

{ (2qo+ vý) .Q(1X N)} VP 0

This equation holds everywhere on the sheet. Since

VI1 Y 0 everywhere, it requires that

(2q 0 + VO ') . (x NL) = 0 (241)

Thus for the orthogonal base vector system (tl, LN, t1 X N), the average velocity at the vortex

sheet, (q0 + 1/2V7t), has no N component from Equation (2-37) and not 1 XN component from

Equation (2-41). Hence the average velocity is parallel to the curves of constant circulation, and the

equation for " can be constructed from two of the three scalar equations which make up

(2q0 + V4)Xt 1 = 0 (2-42)

The vector til is

a -0 aO+fif --0 i

and on the shed vortex sheet

(2q 0 +V=- es + a2 fl + Ž )e + U+

Hence, Equation (2-42) in component form is

fU -a f a --) -=0 (2-43)

32aaoxae
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.L l+1 0 (2-45)

Thus from Equation (2-43)

8f 2  U+1/2ax
1- (2-46)

2 f,2 a 0

and from Equation (2-45) 1 a

af] 2 aa

a0 1 a4 (2-47)

2f12 a0

Equations (2-46) and (2-47) are nonlinear coupled integro-differential equations for the radial and axial

position of the lines of constant circulation.

The integral over the shed vortex sheet in the expression for 0, Equation (2-22), can be simplified

using the coordinates zo, 0 used to describe the vortex sheet; see Figure 4. First, in the expression

1 _r-s
V -

SLr-_I ir-s13

the position of the circulation element is used for s so the integration is performed for constant circulation

strength. Second, the value of the vector surface area element n dS is given by

ntdS = tlXIt2 dzo da

_ a _ (2-48)

=- X- dz0 da
a TO

where a is a dummy variable for 0; see, e.g., Wills.4 3 With these changes, the integral over a shed vortex

sheet becomes

1k,= R x o da (2-49)
o d TE(zf )

where b denotes an individual blade.

Hence, 0 becomes:
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Z-J - r-s 7-1
kf~r) _- i .s)no dS+EZ Ob, V(r)S4 'r b=L-s[13 b--O

1 go - 3  b(2-50)

1 Z-1 f do' s

+ LI ds
4  b=O IBr-sI

As described in Chapter 1, the propeller geometry is traditionally defined in terms of blade

sections lying on cylinders of constant radius. The nose-tail line lies on the cylinder, and, hence, blade shape

is measured from a helical surface of radially varying pitch. On the cylindrical surface aý= constant, a left-

handed coordinate system (to define section geometry in the traditional orientation) is constructed with

on the surface of the cylinder and is measured positively in the downstream direction along the constant

pitch of the nose-tail line. The variable ½2 is normal to the ý1 axis and points in the upstream direction.

Unit orthogonal vectors (el, e2 ,_e) are in the (I t2' ZZ) direction, respectively, but the coordinate

system is only locally orthogonal; this coordinate system is detailed in Chapter 1. Although the pitch is

assumed to be that of the nose-tail line, it is not necessary in the following development and will not be

used that way in later chapters.

The blade shape is given by

t 2 = E(t 1, aT) c2[a) <• t1 < Cl(a),O < aJ < R (2-51)

= Ec( tl, "•) ± E7-(ý1, )

where E. is the camberline function and ET is the thickness function; hence, the position vector of a point

on the surface is given by

s (6 + 1sin Op P- E cos oP)i - asin (0b + W

tICos °p P+ E sin ý° A t ICos 0Pp+ E sin ýpp

S++ (ob+ a+ F k (2-52)

where ýop(Z) is the pitch angle of the blade-section reference line,

63(ý) is the rake, and

W(a5) is the warp.

A normal is given by; see Chapter I
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N ± i X~CS)~d

- el (sin l a~ d nr7

d6I aE (3+- os •p +- sin ýP (2-53)

+ + E a eas]

where the + sign refers to the SB+ surface, i.e., suction or back side; and the - sign, to the SB- surface,

i.e., pressure or face side. The vector element of area is

nds = N A, dc (2-54)

These expressions can be substituted into Equation (2-50) to give precise limits on the integration. Because

of nonlinearities, no conceptual simplifications result unless the expressions are linearized.

The explicit form of the normal allows the body boundary condition to be simplified. The free-

stream velocity can be resolved to

_.0 = Iq01 cos (p p - P)eI + Iq01 sin (hp - Ne2

so that on the body, the boundary condition is

N .N := " --U + 2 a2I sin - j) - cos ( Op (2-55)

where = tan, U-

Equations (2-49), (2-50), (2-46), (2-47) and (2-55) constitute the exact formulation. Equations

(2-46) and (2-47) are nonlinear in 0. Although Equation (2-55) is linear in 0, an integral equation results

in both the design and performance applications. Fortunately, however, the integral equation can be

reduced to a quadrature in appropriate cases when the solution is expanded in a perturbation series. These

perturbation solutions are the subject of Chapters 3 and 4.

With • known, the pressure can be computed from Equation (2-14)

P = P (K -[ 2 - (2q, + VO) -V

and then the force on the propeller can be found from
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Z-1
I= f p(-n)ds
b=O3 SB

- i [2qO + V7) -Vo]nds (2-56)

b=O SB

In particular, the thrust is

F Zi= zff [(2qo + Vq5) • VO/ i •nds (2-57)

Equation (2-54) can be used to give an explicit formula for calculating thrust. Thei component of

Equation (2-53) is

I ~ aE
-= T cos Op + sin sp 1  •l

= Cos ýP1 + Silln ac .o1 1 - V si 5iT (2-58)
P , ,,,at

Hence

O~ ET-

or in terms of q5:
T--Z d a" O oP vc+ o - -

'~ ~ fe 2 ,L:: .c(

"R C

(cosýOp + sill nO C )-• + qo{ V (e÷ + 2-)+ V÷ - V+

SaET

+ V7o sin 1 s1 oa jd s
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where 0+ and V are the values of 0 on the suction and pressure side of the blade at the points of inter-

section of the line t1' ýwand the blade. By analogy with Equation (2-25), the circulation at the points of

intersection of the line t1, Z and the blade is defined as

S1,-,

f- (VV0+ odf+ - o7- (2-59)

where the integration starts at a point on the edge of the lifting surface or wake and goes to the point

1 Similar to Equation (2-37), we define

aB•l,•) = g + V-

til, a'

f. (V0+ ° df_+ + VV- d• - (2-60)

which gives

2 dZ I d 1 2q0 *V1B + B oS ( Op + sin •op
0 f2

+ +aET]d 1 ( 6)+ (2qo - 7ýB+ 7+ •O 70 + 79P- " 7qO-) sin •o~ dt (2-61)

The thrust coefficient is

T Z 1 -Fcr d= [ co P IU2o + n2 .92 Cos (ýOp•° ')
T 12 p U2 irR2  7r Uj2 f + P-

+ 2 + g22 "•2 sin Op f cl/R J cos (sOp-3) /Iar PB aEc

c2 /R ar,1~
4lPB aET\ 1ET

+•1 k sin (Op -týe 2  (V('B at cot Op vrB

+VFBat d+c°SOPc2 VCoBs VBd + sin-p VR (2-62)

~c/R/ aEc '

B B at, +~ (T+3(VV)2
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Similarly the moment acting on the propeller blades is

Z-I

AlJ Y_~ P6X(n))dSSb=O a SB

I• (2qO + 7r) Vo (s X n. dS (2-63)2 /)= SB

And tile moment about the i axis is

if .°i-P Z• (2q( +7V]'V5i'(sXn)dS (2-64)

This equation is not of fundamental use in the following development and is not further reduced.

Before the previous formulation can be considered the complete solution, two points assumed in

the development must be checked: first, that the integration over the region at infinity, which was neglected

in going from Equation (2-18) to Equation (2-19), gives at most a constant; second, either that the solution

is unique or that further conditions to establish uniqueness need be specified.

To examine the integration over the boundary at infinity, an area consisting of a finite cylinder of

radius W with ends at x + X is considered. The integration over this area as X, W -, + - is to be

evaluated. By uniqueness proofs45 for nonlifting problems, the integrals of 0 and V0 are zero for that

portion of the solution arising from the integration over the body. Any constant arising from integration

over the wake also gives zero on the cylinder and the upstream surface. However, the downstream surface

must be investigated in detail since neither 0 nor VO go to zero as x -* + Co

At the downstream surface the vortex sheet rolls up as it does for wings; see Cummings.50 How-

ever, the total circulation remains constant and the lines of constant circulation become asymptotic to

regular helical vortices of constant radius and pitch. The integral over the downstream surface requires

evaluation of the two quantities

J1 =f i dy' -Xy dz (2-65)
X-- __0 -- 00_o

and

5 0 Cunimings, D., "Vortex Interactions in a Propeller Wake," Massachusetts Institute of Technology,

Naval Architecture Department Report 68-12 (Jun 1968).
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X400 00-
dy f xIrs dz#1 (2-66)

where

r = Xi +.y j + z k

s =-y'j + z k

and the bar through the integral sign means the vortex itself is excluded; 0 and Ox are undefined on the

vortex surface, except in the limit.

In Appendix A, the form of the potential for a vortex distribution on a regular helix is examined,

and it is shown that both 0 and Ox have the same form far downstream. Since the velocities are known to

exist in the sense of a Cauchy principal-value,11,13,14 we assume the potential does also. In particular,

this means both 0 and Ox are bounded in the fluid.

The region of integration can be divided into two regions; one bounded by a circle of radius A and

the other one the area outside this circle and going to infinity. By taking A sufficiently large, integration

over the area exterior to the circle can be made to yield as small a value as desired, since 0 and its

derivatives go to zero. In the interior of the circle, the boundedness of 0 and the power of X in the

deonimnator insure that the limit as X -0 gives a zero value for the integral. Thus the integral over the

surface bounding the fluid does not contribute to the expression for 0 given in Equation (2-19) and the

statement to that effect just previous to Equation (2-19) is justified.

To examine uniqueness of the potential, two different solutions are assumed to satisfy Laplace's

equation and the boundary conditions. From these a third solution is constructed by subtracting them..

This third solution also satisfies Laplace's equation and has zero normal velocity on the fixed body.

However, unless the two solutions have the same circulation, the difference solution will have a shed vortex

sheet with a finite value of normal velocity on it. Hence, the two solutions must have the same value of

circulation in addition to satisfying the boundary conditions. Identical positions for the shed vortex sheet

are assumed. Then the difference solution has no shed vortex sheet, and 0 , 0 for Irl ,-0.

Green's first identity in the form

(v )+ t)dr = f 0 1 (2-67)
V

then shows that

JJJ VO-V7dT = 0 (2-68)
V

Since VO-VO is a positive-definite form, it follows that V7 = 0. and hence, that 0 (the difference of any two

solutions with identical circulation) can be at most a constant throughout the fluid. Therefore, any two

-solutions of the problem which have identical shed vortex sheets differ at most by an unessential constant;

thus the solution is unique.
39



CHAPTER 3

REGULAR PERTURBATIONS IN PROPELLER THEORY

A-GENERAL FIRST-ORDER SOLUTION

In this chapter, the regular-perturbation problem is examined and the application of the formulation

to both design and performance calculations is discussed.

For the regular-perturbation problem, the propeller is assumed to deviate little from a helical

reference surface of variable radial pitch angle ýp (). (This is the same description as in Chapter 2.) In

design this surface might be the approximate position of the shed vortex system, and in performance calcu-

lations it would be the geometrical pitch surface. On the cylindrical surface a= constant, a left-handed

coordinate system (t1 ,2' ",a is constructed (as was done in Chapters 1 and 2) with ý1 along the inter-

section of the cylinder with the reference surface so that ý1 increases with increasing x. The variable ý2 is

on the surface, normal to the t1 axis, so that t, increases with increasing 0. The cylinder is rolled out in

Figure 5. Unit vectors (f 1 C2 ,2e a) are in the (t1' t2, a) direction, respectively.

SAOb + W)

OPp
t2 tj•

Figure 5 - Coordinate System for

Describing Blade Shape

In terms of these new independent variables, the position vector is (Chapter 1)

r = (63 + t1 sin p - c2 Cos Op%)i - a sin (Ob + W

ýl Cos •°p + 2si~n •°Pj

+ P + pcos ( Ob + W (3-1)

Cos J Op + ý2 sin •OP)
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The blade is assumed to be described as

ý2 =eE(•I, 0) (3-2)

= • E(tl, a) + e ET (t], "• (3-3)

where E is the function describing the blade thickness and camber for the appropriate restrictions on the
independent variables t1 and Ia5,

e is a small parameter describing the departure from the surface t2 = 0,

Ec is the camberline function, and

ET is the thickness function.

The description of the blade offsets differs from the presentations in Chapters 1 and 2 by explicitly making

them 0(e).

The position vector of a point on the blade surface is given by

2+ t1 sin •p P- e E cos sp )i - "Ssin (0 b + W

Cs cos p + e E sin ýOp

4.Cos b , +/E3-4)

Two tangent vectors to the blade surface are given by

tj

as

Hence a vector normal to the blade surface can be constructed

N= ±ItX2

S-2-6 e inl ýC os 4 (3-5)
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|i I i

en', I: sin ~P , -1a M )

a/" al, d~ (3-5)

+ Fh- i2 (ont'd

Note that even for Jp 14= = 0 and L' = L(l/) a term appears in the cadirection. This is be-

cause the cross sections are measured on the surface of cylinders of different radius. For ,-, the radial

component of the normal vanishes for the stated conditions.

The boundary condition on the body, Equation (2-55), gives two equations

1/2 (f+°V+ -N Av- -VO-} + C? E22 Sl f,)•ýP-•O

-- 1 (p3) (3-6)

and
CU 3 ET

1/2 (N+ V-np + N-°Vp) u + w 2 S2 2 • cos (f-P-f) (3-7)

The further assumption is made that

(•O- O() = o(e) (3-8)

(This assumption is necessary only in design, since it insures that the camber and the potential are 0(e).)

As yet no approximations beyond the inviscid, incompressible fluid and the steady velocities have

been made. However, to obtain the regular perturbation solution only the terms to order e are retained.

Hence, a point on the surface is given by

_s =s0 + E s] + O(C2)

= (6 + l si?? )p)i- C0sin ( b + W)

+ acos b + II+ !Lý C ) k + { -E cos iO" (3-9)

(o •l COS •.E sill ýpl

COS ( +

- wsin b+ k+ ) k}+0(62)
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and the normal to the blade surface is

NA No + eNJ + 0 (e 2)

= ±E2+ dP (cos ýOp) + d6W
2 da 2,Ta +dacWs ý01p- CA) ý sin •Op P1 e

E L a 7  dW(d-10)
+ e -"1el .at] I in f Olp F +c os POp W -d a

-Ccos p ] + E -E ea + Q (C

The potential function due to the blade disturbance will vanish as e -+ 0 (since then the thickness

and camber vanish) and -Op -, 3. Hence, the potential function can be expanded in a perturbation series with

first term 0 (e). In particular, the potential on the blade surface is expressed in a perturbation series

' (t1' e E, a) = e6 (t1 , 0') + 0 (2) (3-11)

Because f0 is 0 (e), only zero-order terms in the integral over the blade in Equation (1-50) need be retained.

The equation is then

r-S N= 1 13s)

SB-I3  SB SSo1
0

+ 0O(e2)

__O - S -0 + t dl co+ 0 (e 2 ) (3-12)

.*Actually it is the difference in velocity across the blade, Equation (3-13), which should be taken 0 (c),

which is necessarily true only in design. If ýpp-0 * 0 (e), as would be true in performance calculations,

then an integral equation must first be solved to find the pressure distribution corresponding to an

uncambered, thin lifting surface at an angle of attack. The remaining problem corresponding to the camber

and thickness is then 0 (e).
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where SBO is the projectlion of tihe blade outline on the surface 2= 0

N+ (rZ'o) (6 X) cos op) Sill p {.v c1 (O + sil 0}

+ 1O - S il.+ C S)

cos 0 -. I, sil 0 - -1 sinhp +cossp

Lr-s() =(x - 6? -- 1si•Sil + ) 2 + + sin 0)2

+ (z - Cos O)2} 3/2

ý1 Cos ýO p
and 0 = 0b + W +

co

As in Chapter 2, the jump in potential across the blade surface can be interpreted as a local circu-

lation. In terms of the velocity jump across the surface it is given by Equation (2-59)

PB (ý , a){+- }

Jf V0+ o d+- v-- od _-)

=f L q+ - q-) di 0 + 0(e 2) (3-13)

where the path starts from any point along the leading edge and

TF(zo)

rzo) = (q+ - q-) -d( 0 + 0 (E2)

LE

Similarly, the integral in Equations (2-21) and (2-50) reduces to

4---'•[r-s[d~l d a

"4r S 0  --

aET

2U sBU + &22 /2  
+I (OP-O) dtld + 0(e 2) (3-14)
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The position vector of the shed vortex sheet is determined by Equations (2-46) and (2-47), which

to first-order in e become
0o ( ). +0( 2

f2(zo, O Tf2(/ZO, O)+ef2 (0- TZO, O0)+ 0(C2)

U-- XT(ZO0) +" 0 -(o TE (zo0)) (3-15)

+ e 11-20)•do; a+ 0 (e2)
OTE 2 z 0

flzO=f(0) l(1)2

f](z 0 ,0)f, (zO, 0) +f (zO, 0) + 0 (e) (3-16)

0

=Zo.+ 1/2 2 e V4i 0) da + 0 (e 2)

OTE

Hence

S= _1o + el + 0 (e 2)

U
= z0 eW+ (XTE(ZO) +"j(0 - OTE (Zo))

+ e(1/2 2 n P--o) da).e+ (1/2 f { X0) (3.17)

TE

0- z O) da) + 0 (e2)

However, since r(zo) in Equation (2-40) is of order e the first-order solution for the potential of the shed

vortex sheet requires onlySO, The zero order normal to the shed vortex sheet becomes:

O -ao xazo (+0zoeo +-•i•)X (feZ+--7kO XTE

U OT ,

-Zoi+ Zo ( TE- -U (3-18)
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and the do( p',rotduct in lhe 1c ininite integral is,
+i

-0 /x -•' (a O0,./) x/ + aJ/sini 0 { s .iii a

" (TI: + cos a- + cos 0 z (0cm a o (3-19)

"(ITv 7TI). sii a U/ j "2 0 T; I

and tihe denominator is

Lro[- ' (TIE +- (a 0T/j) 2 + Z-2 +- -210)

- 2 0COS (0 - a+OTIi 3/2

where tie position vector of an arbitrary point in space is expressed in cylindrical coordinates. This is

done to facilitate the integration since past experience 11 13,14 indicates that in some cases the integration

can be done analytically for such a representation.

Putting together the previously described pieces, one finds the total first-order potential for the

disturbance due to the blades, omitting the E

I _ I?
" -47r b--- ff ss d+ d •

0i

(q+ - q--) df + 2+ (02 5T
Lt:"E aý,

(3-21)Il-.SoI-3

fR z(zc- 0  • x da

4, 1)= aa 13h

This equation is the first-order solution for the regular-perturbation problem. In the next two sections, the

use of this equation in design and performance predictions is discussed, and in the last section the second-

order solution is outlined.

The force on the propeller blade, Equation (2-56), is to first-order in E

F =eff (qo VFB)NM dwd (3-22)
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and the thrust produced by all the blades is

•Z•-I •R P . ... ^U+2 ý,Zý2

T - i" F= epZf cos O V U+2 02 CQS (p -132 F(6) d a (3-23)
b=O o0

The torque can be computed in a similar manner but it is not used in the following sections.

A second-order theory follows by straightforward application of the previously described procedure

when thickness and camber are expanded in perturbation series. The second-order effects include con-

sideration of the first-order position of the shed vortex position, Equation (3-17). Second-order design

theory is discussed in Section D.

B-DESIGN PROBLEM

For the design problem considered here the total thrust produced by the Z-blades is specified at

one operating point, as well as the following geometrical data:

1. Blade outline

2. Chordwise thickness function and radial thickness ratio

3. Number of blades

4. Position of blade-reference line

The designer also specifies, to within a scale factor, the chordwise difference in pressure, i.e., the

pressure on the upper surface minus the pressure on the lower surface, which reduces to

P- P+ N{ (q+,2 -(q)2

Since q = q0 + V0, the pressure difference is

+P = q 0  *o B +1 27 B ' Vr

Also, since q0 has a zero-order component only along e1 , the significant term of VFB is theel

component. The velocity difference 7 rB can be resolved into the three orthogonal components (y, g. o),

IB= -oEj+u +a (NO Xe1)

From the boundary condition, Ecjuation (3-7), the component of # is known to first order

ji= 2 eVU2 +,,,2 2" Cos (Op - _0. NO) + 0 (e2)

However, to O(e), no use is made of this knowledge.
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Now since V I'l = o(,), V ýj. = o(e). si, (O ) = O(c), and qo = iqOI cos (,p * )_e/ + 1q,1

i I , 3)c the pressure distribution is

p

S= (2 + 22 "2 (e-f(I) cos (P- + O(e2 ))

I lence to first order, the chordwise component of the velocity difference is related to the pressurc difference

across the blade by the equation

p- - p+

(3-24)

p g + EZ2 Los (ýp-9)

For the first-order problem, no information need be specified about the other components of the velocity
*

difference.

•The component a can be found from V 17B since IB is known in terms of y(l) stated previously. An

alternative is to note that when a tangential discontinuity in velocity exists across a surface, one can define
the surface as a vortex sheet with a vorticity distribution given by

- 0

-A_. nx X q+ - q-) = -. x ('eel + a (& X el))

TO+

U= ' aj uel + -(No X el)

Since A must satisfy

V A=O
the component a can be found'from the partial differential equation governing the components. The
equivalence of both these approaches is demonstrated in Chapter 5.
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The local circulation, which is the quantity needed in the calculations, is given: by Equation (2-59)

or to first-order by Equation (3-13). Since the chordwise component of velocity difference is known, d ,

the tangent vector in Equation (2-59), can be taken as

df= tj dt, dt + (e - e2

Hence Equation (2-59) becomesFJ '{ 0 "
"PB = f e 2  } ((P- d () + l C e2 L "

¢2 (Z)['e' 
( {

+1 ji--N+ a (f6oX el) at • 2)

aET+ V OB" E2 •-Cl dt

S+e-(1 V +-e 2  (NE Xej))+ V OB e2e d{1,f2 a'

When the quantities are expanded in a perturbation series, one finds

1rB ,(1) d{1  2 ,),(2) + l(!) + le

f? fc2 a, -2

a EJT\

"AX efI) + ' 0b)(1) "e2-b ) -2 d + O(e 3

where

dp (COS2 tOp) _ dW d6M
-S 2 *( -N +X ) 1  - o sin Op '+ c os Op

dw- 2 rJ5 d dco

and E2 VOB(l) = 2v; v is from Equation (3-26). For the first-order problem, only thIe leading teim stated

previously is needed

= ( f 1(1) dt1

C2
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When Equation (3-24) is integrated over the chord, the total bound circulation distribution, still

with the unknown scale factor, is obtained. This unknown factor can be determined from the equation for

thrust. IEquation (3-23). Hlence everything needed to calculate the first-order perturbation potential is known.

What is not yet known, however, is the magnitude of the camber and the blade pitch which will

produce the specified thrust. To obtain these values, the boundary condition, Equation (3-6) is used. To

first order, this equation is

- sin - 1/2 (3-25)
V'U2 +(2n

where i is a principal-value integral given by Equation (2-18).

For conceptual consistency the blade trailing edge must lie on the reference surface so that the

trailing vortices spring from the trailing edge. Thus

f at', f a c f; c
c2 c2 Q 1 •

This camberline will consist of a shape measured from the nose-tail line and, in general, an angle of

attack, This angle is added to the pitch angle of the reference surface to give the total blade pitch. This

incremental angle is called the ideal angle of attack.

The knowledge of the camberline completes the first approximation for the design problem. The

regular perturbation solution involves an integration to find the slope of the camberline and then a

straightforward integration of this slope to find the shape. However, a new term appears in Equation (3-25)

which should be explicitly mentioned before proceeding with the analysis.

From the equation for 4 in Equation (2-18), one sees that Equation (3-21) gives 1/2 tP when the

principal value for points on the blade reference surface is taken. Hence, if the gradient of • in

Equation (3-21) gives the velocity

V = tueI + ve2 + w.e•- (3-26)

and if for r r0

I
2 B = u(l, 0, "5)eI + v(t1, 0, ý)e 2 + w(t 1 , 0, e

then Equation (3-25) becomes

50



/

t , 2 - - 2 S i l l ( 0 , L( 3 -2 7 )

+ FCos p + co-sil -- (ill w(•l, 0, a()

In the literature, intuitive arguments are used to derive only the first term on the right-hand side of

Equation (3-27). The formal procedure presented here indicates that another term also contributes to the

camberline shape. For the term containing a multiple of the distance from the reference line, the effect

will be most pronounced for points near the blade edge.

In the discussion section of Chapter 5, an estimate of the contribution from this term is made. In

addition, other aspects of the design problem which simplify the integrals are discussed.

C-PERFORMANCE CALCULATIONS

To determine the performance of a propeller over a given J-range, it is assumed that the position

vector of a point on the surface is given, that is, the geometry is completely specified. The unknowns of

interest are the thrust and torque as a function of J and possibly the pressure distribution. The pressure
e aET

distribution near the leading edge will not generally be accurate because - is in general infinite and
8ý1 LE

hence not of order e as assumed in the derivation. In the design problem, this point was not critical but in

performance calculations it will generally give results for the pressure distribution which are not uniformly

valid at the leading edge. However, it is integrable and hence the total thrust can be found.

In calculating the propeller performance, the circulation is unknown, and the zero-order position

of the shed vortex sheet is known. Modes for the chordwise distribution of velocity given in Equation (3-24)

can be assumed which satisfy the Kutta condition and which have variable spanwise coefficients. Then, in

principle, the integral equation formulation in Equation (3-25) can be solved for the spanwise coefficients.

Sugai4 0 was able to successfully evaluate numerically such a procedure. Murray 3 3 used an iteration pro-

cedure, starting with blade-element theory (Glauert5 ) with a reduction factor found necessary for con-

vergence. As already mentioned, Murray's performance calculations did not converge to the values set in his

design.

Presumably the exact solution in Equation (2-50) could be used as the integral equation without

much increase in complexity but no one has done this yet.

5 1Glauert, H., "Airplane Propellers," Division L, Aerodynamic Theory, Edited by W.F. Durand, J.
Springer, pp. 169-360 (1935); also published by Dover Publications, Inc., New York (1963).
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Rather than solve an integral equation it would be preferable to obtain a solution which could be

constructed as quadratures as was done in the design problem. Such an expression is found in the next

chapter.

* D-SECOND-ORDER DESIGN THEORY

The second-order theory follows by retaining terms to order e 2 in the previous development. Most

of the second-order effects are known from the first-order solution; however, the second-order increment in

circulation must be evaluated. This is found by considering the second-order thrust

T =T,(g(1) + F2 r(2)) + e2 T2  (3-28)

where TI(CU(1)) is given by Equation (3-23) and

,R ~ Cl 1 ) 1
T 2  p Z d ( r(B) () cos op + 2 u+ .2

I sin (Pp-g 3) cos 0p E2 * vrB(1) + cos (Pp-fg) sin iPp (3-29)
__(3-29+)__ Vi

(a rB(J) a Ej) a4OB(M 8.ET

All quantities in this integral are known from the first-order solution. Since in design the thrust is set and

since TI(eU()) is the set value, the second-order terms must vanish:

e 2 T](r(2)J) + 2 T2 = 0

which fixes the value of r( 2 )

eC1 r •7B1 (1)

r( 2) (•=Z - j 1/2 (3-30)

c2  + 22 Z2 Cos (ýpp-

(aB a)l aýB() aETe
+tan ý 1 E" ) + - + tan (sp -0) f2  vrB( d 1
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In design the form of the chordwise circulation is assumed to remain, constant, i.e., y(• 1 , •) in

Equation (3-24) is a fixed chordwise variation; however, the amplitude of the function may change. The

scale is fixed by the magnitude of the bound circulation.. If -yis normalized to give unity when integrated

over the chord

C'

f c -y1, •a) d =l

then the scale factor will be just the total bound circulation. In this case

(q+ - q-) o e ,(I() (a) + C A-(2 (a) -Y *( 1 ' )

and

FB(1) = p(1) (Z) f 1 dl (3-31)

cZ

where * (t]' Z5) is the normalized value of Equation (3-24). Now we have previously found that

•1 fl]I~y Ec

B )ef e2 ' (NfX el))"B C 2 ~ ) d , +62 •21 (2 ., 3 1

+e aET e_2 
(Bo e1),1(3-32)

Thus e( = r(1+e2 F 2)+ +2( l + 3E)

V lPB ) + dP1)+dljeaE+e2 Vdý
Hence

r (2) (2) C I (aECAp(2) ~~ =p2__c2-ff•" (P(1) + a(1) e2 (o (NX el))

aET!
+42 * B_1) d t, (3-33)

53



All quanttities ilppCaring under the integral sign in Equations ( 2-49) and (2-50) arc expanded in

peitur•ation series and the second-order contribution found. The necessary expansions have been given

previously and in Part A. In these calculations it is assumed that the thickness function is given and constant

at order c. The quantity sought is the second-order correction to the camber. This is obtained from the

boundary condition on the blade set in Equations (2-10) and (3-6). Because of the length of the ex-

pression, it is not given explicitly but it follows directly from the previously described development.
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CHAPTER 4

SINGULAR PERTURBATIONS IN PROPELLER THEORY

As described in tile introduction, the singular perturbatiooo problem examines the solution as the

chordlength goes to zero. At a fixed point r =(."' in the flow field relaJtive to the propeller, the

chordlength-to-diameter ratio F" goes to zero. Since the geometry is unchanged except for chordlength,

the blade forces go to zero in this limit. Hence the flow disturbance vanishes as the lifting surface

vanishes. The solution in this case is just a lifting line (as the chordlength goes to zero, thickness effects

give a second-order dipole distribution rather than a first-order source distribution and hence will appear in

the higher-order terms of tile solution). This is the outer flow. The flow near the body is the inner flow

and can be found by stretching the coordinates near the body so that the flow field is magnified sufficiently

to recover the necessary details. In the inner limit the stretched variables are held constant as the chordlength

goes to zero.

A-FIRST-ORDER TERMS

Outer Flow

The starting point is the outer flow which is found by straightforward linearization of the exact

solution given by Equation (2-50). Both 0 and F will be of the same order in the integrals of

Equations (2-49) and (2-50). However the integral over the blade area is of higher-order than the integral

over the shed vortex sheet because the area of integration goes to zero with the chordlength. The zero-

order integration over the shed vortex sheet reduces to the lifting-line results. i.e., a TTFT(zO)) - b=

21rb
- with the zero-order position of the vortex sheet. Formally, the circulation is expressed in a

perturbation series of the form

r(z 0 , E) = 61 (E) r( 1 ) (Zo) + 62(E) r( 2 ) (Zo) + " (4-1)

where E is the maximum chordlength-to-diameter ratio and 65 n() is an ordered set of linearly independent

gage functions, with the property 6n+1 = O(6,) as F-, 0. A general form for them is a ln
Oa3 _n1,

9) an e- where a.m are constants. Normally the terms with a,, 4 =k 0 are considered trans-

cendentally small and are ignored. The coefficients aM will be found as the solution evolves. The

position vector of the curves of constant circulation in the shed vortex sheet is also expanded in a

perturbation series
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_(Z0" 0; ý) =_(:o 0) + 51(E) I_(zO, 0) + 52(J) _2 (zo, 0) + (4-2)

From Equation (2-46) and (2-47) the zero-order solution for a blade-reference line lying along a radial lirie

in the x = 0 plane is

U

iO zOef + - (Ob)-O (4-3)

and consequently the normal is given by

U

30 az0  Z 2

zoi + -.. e0 + O{S1) (4-4)

Hence for the outer flow, the lowest-order solution in Equation (3-50) is

0(x, y, z; 9) = 61 01(r) +

R 
(4-5)

01 (r] " (zO) G , o dzO)

Z 1o [0 -- (a-%)jZO-bsin (0-a)

where G(r, zo)= d a

b=O 0 b U 2 a2 ÷z02 20 2

Z 1 - -H (a- 30r 1

ZOI +- - -dy (4-6)
b=O 0 r

where

r = J//x - HY)2 + Cy2 + z-2 _ 2zo -cos (0-_-Ob)

The reason for this restriction on the reference line will be explained when the inner flow is examined.
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This expression is also derived in Appendix A from the Biot-Savart Law applied to an elemental horseshoe

vortex. Isay35 presents a similar equation which he bases on the work of Yamazaki. 19

Equation (2-50) also contains another term which appears to be of order Z; the integration of the

source terms over the boundary. The first-order effect in these integrals reduces to an integration over the

radius and an integration of the thickness slope over the chord. Since only closed profiles are considered,

this integration is zero, and the contribution is second order. In the outer flow one expects dipoles rather

than sources which is confirmed in the previous statement.

Inner Flow

Unfortunately, the potential is not uniquely determined since the circulation is unknown. The

circulation is determined by details at the body and hence must be determined from an inner flow for which

the body boundary condition is not lost as the limit of zero chordlength is taken. Because the spanwise

scale is not changed as f - 0, a stretching is needed for only the chordwise variables. A suitable

stretching for the reference blade along the z axis is

"x = x/l and = y/g 0 <z<R (4-7)

where' and T are held constant as F-, 0, The z variable remains unchanged.

The previously described transformation applied to the Laplace equation gives

--- + 4 2 a (4-8)

a-2 a=2  az2

Now it can be seen why rake and warp have been excluded from the analysis: If rake were included, a

displacement varying with z would have to be made in x before the stretching in Equation (4-7) could be

performed,. This displacement would introduce a term of order F on the right-hand side of Equation (4-8).

Rake would be equivalent to sweep in wings, which has been considered by Thurber.7 If warp were in-

cluded, a displacement in y would be necessary. A displacement in either x or y prior to stretching would

also lead to a transformed Laplace equation with a term of order T, unless the displacement were constant.

The second-order right-hand side means that the first two nontrivial solutions are governed by a two-

dimensional Laplace equation with the spanwise variable a parameter. Experience with wing perturbation

problems indicates that the first term governed by Poisson's equation is a practical limit to the number of

terms in the series,

The potential in terms of the inner variables must also be expanded in a perturbation series. The

potential in the inner region will be

S(X, y, Z; r) O(-, ,z; E)=D y- , Z;

- 3l('x, z) + 3;2(E))2x,, z) + 0 00 (49)
The inner potential is of order F because the velocities in the inner flow are required to be bounded as -, 0.
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The inner boundary condition in Equation (2-10)

SL V - go " Li forreSB

has to be expressed in terms of inner variables. Instead of the T and y defined in Equation (4-9), it is

convenient to use variables measured along and perpendicular to the chordline in the'xy plane. The chord-

line is at an angle .pB/z) relative to the Taxis and passes through the reference line, the z axis. The variable

measured along the chordline is positive in the downstream direction, and the variable t is normal to

the 1 axis, positive in upstream direction. This coordinate system has been examined in Chapter I and is

shown in Figure 6 below.

Y

Figure 6 - Geometry in Plane at Fixed z

The variables I and •2 are related to x and y by

x -= sin OWz) - 2'cos dz)4
(4-10)

y- = cos sBz)- 2 sin •, yz)

Obviously if a hub existed on such a propeller, a complicated expression in (x,y,z).would be needed for its

geometrical specification. For narrow blades considered here, this problem is not significant.

The shape is assumed to be given relative to the reference surface bya .shape function (Chapter 1)

t2 = E(t I"z) (4-11)

Substituting this expression into the previous equations for x and y, and taking the appropriate

differential, one can find a normal (Chapter 1)
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__x - X-l (4-12)az/
where

s_= s.L , E( z),z)

N-- F _ E 4B tE 1  D aE dcPB 1
L-- z a z a •1  d z )k j (4 -1 3 )

where

efI = i sinp - L cos 'pB

f2 = - £ cos ýPB - L sin ýoB

For the body boundary condition, the normal component of the free-stream velocity is needed:

o" _ I_ 2 + -y 2 z2 (sin (iP1 -) cos APB-P)

(d(4-14)
+s~y h--- 

-dz az a dz /

where

U
tan j:=-

The (t1, t2) variables are linear combinations of the xy variables and thus a stretching of xy is
also a stretching of t1' t2. Let the stretched t1, t2 variables be Ol, u2, In Chapter 1, the transformation

of the partial derivatives in the normal was discussed. It was shown that

E1, z; F) = E(_, = E(ol, z)

aE O= 0() (4-15)

3E 
-0T
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With these relations the transformation of the right-hand side of Equation (4-14) becomes

_ 0 'lo U 2+' 2 z2 (sin a- - , o

g Lsn( , z) Cos (4-16

d pB 3 E aE (4.16)
2 ~+ E - z

where . is given by Equation (4-7). The normal in Equation (4-13) transforms to

a =+ E dl+( B2aE a E dPB\'

N =+ e l.±F! e - - + E k (4-17)f2-at-(Y dz 8z a• djz ]

The transformation of Equation (2-10), using inner variables (op, 02, z), then becomes

(LaE BF 3E aEd I
i---_ -j+2 + - - ze 3 a R . dz az at, dz/

L~ 4;b /P a ý
L3z dz 30, a~ 02

-VU2 + E22 z2 sin (ýPB-P) - -Cos }B-A) (4-18)

d / PB a E aE-
Te2S br- -+ E-- -_

dz az a ti dz ,.. .

In this section only the first-order terms are considered. Hence for 4) F'4l the equation for (1 is

a24) a24,1
a + 12 0 (4-19a)aa•2 ao22

with the body boundary condition, on 02 = E(o1, z), 0 < z < R

a% E 0% E
a(2 a1 84)] V 1 (sin cr ---- cos C1 ) (4-19b)
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where Vz)2

a;(z) PWz) - OW(z)

The remaining boundary condition far from the body has to be found by matching with the outer flow.

This process will be formalized in the following section, but intuitively it is expected that the potential in

the outer flow will match the inner flow as the outer variables 2r + y2. 0, <z <R and the inner

variables cr1
2 + o22 -, 0 <z <R. In the outer flow, as an observer approaches the reference blade,

the flow should look locally like a two-dimensional line vortex with higher-order effects caused by the in-

duced velocities from the trailing vortex system. Hence for the first-order inner potential, the far-field

boundary condition is that the flow look like a line vortex. (Subsequent matching will confirm this

hypothesis.)

The inner potential could in principle be found from an inner expansion of the exact potential

given in Chapter 2. Germain52 reports such procedures applied to wings lead to considerable difficulty

and that it is simpler to solve the posed two-dimensional problem of Equation (4-19). In fact, using

complex variables and conformal mapping of a circular cylinder, one can state the solution immediately:

S_~icC 1  ei~

4b1 (a,, 02, z) = V 1 Re f( o1 + i o2) e + a2 li a,

F' (Gj"0, () 1  + i 02) " f u1ic

I ftu1 a]+') -)

+ i r In a -( 1 + i02) e -i (4-20)

where

00 an(Z)

f(al + i' 2 )= oa + iU 2 + Y.
n=O (orl+i U2 f

is the inverse mapping function

an(z) are complex numbers depending on the section shape

a(z) is the radius of the transformed circular cylinder

w(z) = 4 7r a(z)Vl(z) sin (al(z) - ao(z)) is the value of the circulation when

the Kutta condition is satisfied and

cto(Z) is the angle of zero lift of the profile section

5 2Germain, P., "Recent Evolution in Problems and Methods in Aerodynamics," Journal of the Royal

Aeronautical Society, Vol. 71, No. 682, pp. 673-691 (1967).

61



Several techniques exist for finding the mapping function for a given section geometry. Most of

these are discussed by Thwaites. 5 3 It is not necessary at this time to examine the techniques for obtaining

these coefficients, but they are considered known in terms of the geometry. Specifications of the circu-

lation renders the two-dimensional problem unique. In a review of the planar wing problem, Ogilvie, 5 4

points out that the inner expansion can be taken as a Laurent series but doing so adds no new information

or insight to the direct solution from conformal mapping given previously.

Although the solution indicated in Equation (4-20) is the required solution, in anticipation of the

matching discussed in the next section, the form of the solution at large distances from the body will be

examined. Figure 7 shows complex number u1+i02, given by peiei

021

S"-------- ----

v1

Figure 7 - Profile Coordinates for Inner Flow

Hence

pa = ¢rol2 + a22, co= tan"' 0r2
tal

The expansion is straightforward, except for the log term

5 3Thwaites, B., "Incompressible Aerodynamics," Oxford University Press, England (1960).

5 4 Ogilvie, T.F., "Singular Perturbation Problems in Ship Hydrodynamics," University of Michigan,
Department of Naval Architecture, Report 096 (Oct 1970).

62



-in e CO ao a,
In 1n - + In + + +

a a" paei(O A2e2ico

n a al-1/2ao2 2
=In l- + ico + (0e-ico + -e-2ico +•°

a A/2

Hence for large p, the expansion is

VIl(Z1 , a2 , z) -- 2 a sin (rl-co) (W + WO(z)) + Re

V1(z)A

a2  a2 ef(al W) a 0 aO2-ai
+ 1 e-i(a+2c+) + -. + - .

2 [ ;eic ' p 2 e2 icW

"[a0 a1 -1/2ao
2

+2iasin (cl1 -O) _- +
Mee W u2e2ico

a2 -1/2a0 aI + 3

1U3 e3icw

where coo(z) is arbitrary.

By grouping terms, one finds

2a sin (a, ao) +WCOP + ~ hln(a],z) (-1

where kVra 1 , z) = a cos (er-w.) + Re e-i(al+w) + 2i sin (al-aO)aoe-J

2ie2i2
k2 (al,z) +Re a e -i(,l 2r +a -- sin (al- %O) e-2ic (a1 -1/2a 2)
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Ia3  ao2-a1

k3{a 1 , z) =Re e-i(al+3 -)) " _aa e-(l-3'}

2i

+ sin ((1-oJ/) e-3ico -1/2aoaj+l/3ao2)
a2

etc.

The first term is a vortex; the second, a dipole. Then the higher-order terms are listed. No source terms

appear, as expected, since none are in the first-order outer solution.

Matching

The two expressions for 0 are the leading terms of asymptotic expansions valid in different domains

of the flow field. For the reference blade, the outer solution is valid everywhere in the flow field, except

z ý<R, Yx2 + y2 < Co. The inner solution is valid forz <R, /y 2 + y2 < Cor C1x2 + y2 <C, F For

an overlap domain to exist, one must assume that the domain of validity of the outer solution can be ex-

tended to yx2+ 2>• CO (E) where lirn -, o. This extension of the region of validity is discussed

by Kaplan4 and Cole.5 In this assumed overlap region, the x and y variables are taken as

x = x g(E)

(4-22)

y =

where X and • are constants of 0(1), and g(ý) is the function which places x and y in the intermediate

region. To insure x and y are in the intermediate region, g(E) must satisfy

g(E) 40'
E , asF O 0

g(•) )

The x and y are the outer variables, and the inner variables are obtained from Equation (4-7) as

-X = g(g)x _

(4-23)

X = g(j)I
=-i- =Y "

6 4
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From the definition of an asymptotic sequence, e.g., Erdelyi,55 the two solutions can be matched to order

AN(") if

N N g g
M• 0n(7)9b(, 37, z) - n(g) T~( e' , z)

n=1 n--lim =0

9,4A0 ,1(e) (4-24)

(N = 1,2

Hence the dominant terms can be matched if

t 1m ) 01(g, yg, z) - 'I¢flX ',y 1 6•z)

A match to order F, i.e., jLl(F) = F, is possible by selecting 61(F) F rand by requiring the following equality

to hold

fim (91 (g, 7g, z) = 4), (oo, o, z) (4-25)
g4O

The matching principle given by Van Dyke3 expresses the same requirements as described previously in a

more concise form.

The matching principle will be used later but for now a much simpler argument can be used to

find the circulation in the outer flow. The argument is that the spanwise circulation must be independent

of the chordwise stretching.

Thus

I( 1) (z) = 4 7ra(z) Vl(z) sin (al(z) - ao(z)) (4-26)

Hence the outer solution is completely determined to the first order. There are no incompatibilities; conse-

quently, the first-order solution is complete.

5 5 Erdelyi, A., "Asymptotic Expansions," Dover Publications, Inc.,,New York (1956).
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A composite solution, not necessarily unique but uniformly valid throughout the flow field, can be

directly written down. To within an arbitrary constant of z, which to second order is only a parameter in

the inner flow, the first-order composite solution is the sum of the inner solution plus the outer solution

minus the common part. The common part is either side of the equality in Equation (4-25), and from the

inner solution in Equation (4-21) it is seen to be

0C.p. -- z)

= 0 z>R

- T V1 (z) 2a(z) sin (al(z) - ar/z)) (Co + WOdz)) 0 <z <R

Hence the composite solution is

(e 0(X, Y, z) z >R

Oc j 0fl(x, Y, z) + •Abl(0 1, U2, z) (4-27)

+ 2 e Vla sin(al-aO) (co)+ 0o<)

Use of the matching principle will show that coo (z) is such that cw + co = tan'ly/x. This is shown in

Equations (4-34) and (4-45). Such a composite solution is useful in finding information in the flow field

such as field-point velocities. Since this overall view of the flow field is not required in the present

analysis, it is not considered again; however, similar expressions valid to higher order can be obtained just

as easily when the individual higher-order solutions are known. Composite solutions are discussed at some

length by both Van Dyke3 and Cole. 5

The circulation to first order corresponds to what is known as blade-element theory. 5 1 Its use-

fulness is restricted to narrow propellers with light loads. The second-order terms derived in Section B will

modify the circulation distribution with higher-order effects and will extend the usefulness of the solution.

B-SECOND-ORDER TERMS

Outer Flow

The second-order terms in the outer flow will arise from three sources. The first will be from the

integration over the blade. Although this could be extracted by a Taylor expansion from the exact

formulation in Equation (2-50), it is simpler to assume that a distribution of dipoles in the x and y direction

will be the required singularity system. Once again, if the assumed form is not correct then the matching

will not be possible. The second term in the outer series will be from the second-order term in the cir-

culation expansion in Equation (4-1). This will appear in an equation similar to Equation (4-5). The last

second-order contribution will appear because of the first-order modification to the position of the vortex

sheet. Since this last term is too complex to treat analytically, an approximation will be made to simplify
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it. For this term it is necessary to know the expression forl(zO, 0) in Equation (4-2). To obtain S1, the

first-order effects in Equations (2-46) and (2-47) must be included. If, on the vortex sheet, 1/2 x,
1

--•-w U. and 1/2 ia-- w then the zero- and first-order terms for the position of lines of constant circu-

lation can be found from

fl w Z O b +Wo) da (4-28)

f2 -zOf dU) (4-29)
f 0Ob 92z 0 + "'ut(1 ) (t0)

where the second term is left in the inconsistent form because of the approximation to be made. Since

there is little hope of analytically integrating Equation (4-29), one seeks a reasonable approximation. The

main contribution of the modified position of the shed vorticity will be from points close to the line.

Hence a Taylor series expansion of the velocity is called for; however, for even greater simplicity, all but

the first term is ignored, that is, the velocities are evaluated at the lifting line. Hence

U + Fua(1)(Zo)
f 2  0Zo (0-0b)

s2z0 + 'u/l) (Zo)

U + Ua(1 ) (Zo) 1
The quantity z 0  is - times the pitch of the shed vortex at the lifting line. This

g2z0 + Eut(P) (zO) 2r

pitch is often called the hydrodynamic pitch and it is denoted by Pi(zo). Hence

Pi (z 0 )

f2 -(0 (0-0b) (4-30)21r

It is possible to propose a slightly better model for the integral in Equation (4-29) since the induced

velocity both at the lifting line and the value far downstream are known (the value for x 4 is twice that
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at the lifting line). Numerical calculations 17 have been performed for which the information necessary to

propose a variation in the induced velocities as a function of x or 0 could be obtained. However, the

previous assumption is universally* made and considerably simplifies the calculations.

A similar universal and significantly simplifying approximation is to ignore the contraction of lines

of constant circulation. This means the radial velocity in Equation (4-28) is approximated by zero. Any

other constant approximation for it would lead to negative values for the radial position, clearly an

unacceptable occurrence. Here too, alternatives to this crude approximation would be the numerical cal-

culations or results of actuator-disk theory. These alternatives produce complications not essential to the

continuation of the present investigation, and we accept the approximations as customarily used.

These two approximations involved in the higher-order description of the shed vortex position are

defined as the basis of moderately-loaded propeller theory.13

Hence to the first-order, the approximate position vector is

Pi (z 0 )
z 0 zfea + - (0- Ob)i (4-31)

27r

"ý"•0 + I _

U Pi (z 0 )
Since this approximation merely replaces the constant - in Equation (4-3) by- , no further insight is

added to the problem by considering this term and from now on it will be ignored. That no essential

modification to the theory results is not obvious in the formulation of the velocity potential but can be

seen in the calculation of induced velocities by the Biot-Savart Law;** see Appendix B. However, the cal-

culation of induced velocities is usually done with expressions derived for constant Pi.

Thus only the modification of the blade-element circulation distribution and the dipole distribution

comprise the direct second-order outer potential. Although a general gage function 62(j) must be assumed

for the circulation distribution, second-order terms from the blade integration in Equation (2-50) are easily

seen to be order F2. (Change the chordwise integration to inner variables and expand the expression in a

Taylor series.) Thus the two-term outer solution is

*Notable exceptions are Erickson et al. 56 and Cummings, 5 0 who calculate vortex interactions for lifting-

line theory.

5 6 Erickson, J.E. et al., "A Theory for VTOL Propeller Operation in a Static Condition," Curtiss-Wright
Corporation, Caldwell, N.J. (Oct 1965).

**The vorticity vector A= n X VIP has no additional term from the e - component of n, since e- X v P

=0.
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j(r) = Fler) + 82(c) 012(f) + e2 d2r) (4-32)

where 01 is given by Equation (4-5), and

ol12(r) =--• F(2) (Z 0 ) G(r, zO) dz0

1 Z OR xul(zO) + (y + z0 sin 0 b) 92 (zo) dz0  23

0 i2(1) JO [x2 + (y + zo sin Ob2 + (z - zo Cos O) 3/2 (4-33)

where p( 2 ) (Zo) is the next term in the circulation expansion in Equation (4-1), and gl(z) and u2 (zo) are

the dipole strengths. All three of these are unknown.

To match with the inner flow, one needs the asymtotic sequences which results when

Equation (4-22) is substituted into the two-term expression for 0. By an indirect procedure described in

Appendix B, the expansion of 0 is found to be

0(g7, g7, z; g) = Foz; g) -1--r(1) + 62 r(2), tan-1 Y

+ gg• u (1) (z) +÷ ut1) (z)] (4.34)

Z2 x#1 (z) + Y92 (z)
+• + H.O.T.
4 X +Y7

where ua(1) (z) and u/ 1 ) (z) are the axial and tangential velocities at the lifting line as induced by the

first-order circulation distribution.

Inner Flow

For the second term in the inner flow, the governing equations must be examined. From

Equation (4-18), the boundary condition on the body can be determined. One substitutes the two-term

inner expansion

4i, 3, z; F) = NIP(1 , 02 ; z) + v2 4)2(0 1 , (2; z) (4-35)

into that equation and finds that (D2 satisfies
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2 a1 )D o 2) (4-36)
E7 Va -Y at ,aa,

on 02 --E(o2 ; z), 0 <z <R

Obviously, it is most convenient to take lirn 0V2 = 0 so that the body boundary condition becomes

aq 2  E a2
-° • (a]; Z) -ý ° =- 0 (4-37)

on o2 = E(oI; z), 0 <z <R

Similarly, in the flow field, Equation (4-8) requires 4)2 to satisfy a two-dimensional Laplace equation. As

yet the boundary condition at Ol'2 + 022 -0is unknown and must be determined by matching. The

simplest problem for which the two-dimensional flow cannot pass through the body is that associated with

an airfoil at an angle of attack to the flow. Hence as V//o12 + U22 one assumes that the potential

behaves like

(D2(91, 02; z) - 01 V2(z) cos ,2(z) + 02 V2(z) sin ac2(z) (4-38)

where V2 (z) and a2 (z) are unknown. This two-dimensional problem is also easily solved, using complex

variables and conformal mapping. With the same notation as in Equations (4-20) and (4-21) the second-

order inner potential is

42
V12 01 cos a.2 + u2 sin ct2 - 2 a sin (ag2 - riO} (Co + 0)0 (z))

a n
+ i-• kn(CC2, z) (4-39)

Sn=1lP

where wo(z) is arbitrary, and the kn(a z) are given in Equation (4-21). In order to find the necessary

form of this expression for matching, one substitutes

a, = a, g/F and 02 a2 91j (4-40)
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into the expression for 'D2 and obtains

V2 - g/= (ii cos a 2 + U2 sin a2 ) - 2a sin (W,- ct-)) (w + w 0 (z))

V2

+ k1 (Ct2, z) + O(E/g)2  (4-41)

Combining this expression with the one for ID, one finds the expansion for ') has the ,form

¢(D ( g/F' FY2 g/E, z; E) = Fl(Z, F)

Sk , (a,, z)

"g(ý2 + 2)1/2

" P2 V2 [g/E (a, cos a a2 + 02 sa 2)

-2a sin (a2 - aO) (w + wo)+ ] (4-42)

In the next section the actual matching will be performed.

Matching

In this section the coefficients and gage functions are to be selected so that the two expressions

for 0 will be matched. In Equation (4-24) the matching condition is given for the general case. One now

seeks to use this expression to match Equations (4-34) and (4-42). First, one notes that kl(al,z) in

Equation (4-42) is a linear combination of cos co and sin co hence also a linear combination of

_and _--- and this term is known from the first-order matching. By inspection

this term will cancel with the dipole-distribution terms in Equation (4-34), thus implicitly giving the so-

lution for their strength:

P 1(z) + 92(z)
V-(Z kl(1, z) =12 (4-43)

Hence, the matching is reduced to the expression
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-2F(2) tan-'Y+ eg[x Ua (Z) + tU 1 +
2 a

- v2 2 I ( Cos '2 + 'U2 sin a2) (4-44)

- 2a sin (a2-O) (w coo0 )+

where a2(E) is such that terms not explicitly given vanish in the limit.

This matching is possible by selecting

"V2= C2

62 = V2(,) = E2 (4-45)

S+ 0 = tan- y/

for which

x Ua(1) (z)+y u/ 1 ) (z) = V2 (U1 cos a2 ÷ 7 sin a 2 ) (4-46)

r( 2 ) (z) = 41r a(z) V2 (z) sin (C(2 - ao) (4-47)

To determine the performance of the propeller, the circulation distribution must be known ex-

plicitly. That is, both V2(z) and 4r2 (z) must be determined in Equation (4-47). To find these terms we

use Equations (4-46) and (4-10);

Ui(ua(1) sin ýPB-U/1) cos 'OB) - i2uaUa) cos SOB + u/l) s OB)

=oI V2 cos a2 + o2 V2 sin a2

Hence

V2 2 = Ua(1)2 + u 1)2  (4-48)

and
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Ua(1) cos ýoB + uP) sin (oB

ua(1 ) sin pB -iut(1) cos ýoB

Thus the second-order solution is complete. In the next section, formulas for the propeller performance

are given.

C-PERFORMANCE

Determination of the circulation from the given profile coordinates shows that the singular-

perturbation problem gives a quadrature for the performance. However, the appropriate form of the inte-

gral for the thrust and torque has not been determined yet.

The expression for thrust is given by Equation (2-57)

T= - Pz sB[2qo0 V b) . Vol ii" nds

In lifting-line theory the expression for thrust is usually obtained from the outer flow. Here we

derive the appropriate expression from the inner flow since, in the preceding equation, the inner potential

is the appropriate one to use. Now

i* n ds = i E2 T- iei) dA dz

= (T cos ýPB +-sin dPB do z

go = VU2 + E22 z2 [cos (oB- f] + sin (oB - )e2] + R

= Vl(z)[cos a, el + sin aý e2 + F 92jT_

VO = V4) (a], 02, z; 7

+ L2 + •(2D _ 422 +H.O.T.)+O(j)k= El auo1+e2 ( l+

see Chapter 1 for the gradient in inner variables.

Thus to the first-order in F, the integrand

(2 0 + V) VO

involves only two-dimensional quantities, i.e., z is a parameter. By inspection, the integrand can be changed

to
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(02D+ V24)

since 1qo 2D12 is a constant with respect to the chordwise integration and, hence, integrates to give zero.

In two-dimensional wing theory, one defines

2

S(qo 
2D + V2  cV2  do, 2 FN

(4-50)

T- (q-o + 72 V Edal --•
2D

where FN and F. are the forces normal to and along the chord. If one defines

U + Eua(1) + •45"
[Ji =tan-1(4-Si)

S- ({ ut(l) + oo)

then

FN = L cos (SOB - Oi

Fe=Lsin(ýOB- Oi

where L is the lift of the blade section.

Hence the thrust coefficient becomes

T 2Z R
CT= = ir2  R2 p J EL [cos SoB cos (BoB -)

PU2,R2 IUR f
2

+ sin ýoB sin (ýoB - 0d] dz

2 Z oR

r • R 2 PL cos idz 
(4-52)

The lift is given by

cU+•2a1 • .)2)
L p 1(U+ uj1 )+ ) + (2z - ) + 2 F(z; E) (4-53)

Hence
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fo RCT= (2()+Z ,2 +o.)(2 gu()+••.)d

and by retaining terms to only second-order, one has

CT 2R U2 E 1( + .g2 r(2)) Tz F2 r(I) ut(1)) dz (4-54)

By a similar series of steps, one finds the power coefficient

S2 (_M • )
C-
cP

P U3 R2
2

2 Z 2 ((Ez ( '(1E ) + -2 r(2 )) U + E2 r(1) ua(1)) dz (4-55)

(J3 R2
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CHAPTER 5

DISCUSSION

A-COMMENTS ON RESULTS

The lifting-line analysis is essentially the same as that given in the literature, except for notation.

One apparent difference is that the two-dimensional sections are defined on sections cut by a plane per-

pendicular to the straight blade-reference line. However, a Taylor expansion of the shape defined on a cy-

linder shows that to second-order they are the same since the difference z - cois 0(•2J. Of course higher-

order terms would show the effect of the new section definition.

The lifting-line analysis was developed for propellers with a straight lifting line. If the blade-

reference line were raked or warped, the outer-flow potential could be easily found. The overall solution,

however, would not be as given in Chapter 4, because the second-order problem would include solution of

Poisson's rather than Laplace's equation. The appropriate solution for such cases could probably be ob-

tained, but the lifting-line analysis is appropriate only for propellers with narrow blades and hence is not

useful for marine propellers. For marine propellers, the most important analysis is the lifting-surface

formulation, and the rest of this discussion will concern this problem.

In the preceding chapters, the expressions for velocity were left in the form of the gradient

operating on an integral. This is because they are principal-value integrals, and, if the differential would be

taken inside some of the integrals (Equation (2-19)), they would not exist in the mathematical sense; see

Tychonov and Samarski. 4 5 The singularities which result when the operator is taken inside the integral are

usually called Hadamard singularities, and as shown in Equation (2-19), the finite part of the integral is

defined in terms of limit operations. However, if the expression for q is integrated by parts, the order of

the singularity will be reduced for the limit -+ s, and the integrals will exist as Cauchy principal values.

(For a principal-value integral the region surroundingr 0 must be excluded from the integral, and the limit

with the maximum dimension of the excluded region going to zero must be taken; for a Cauchy principal-

value integral, restrictions are placed on the shape of the region excludingz-o).

In evaluating the expressions numerically, either formulation of the problem is acceptable since both

expressions involve a region surrounding the singularity which requires special consideration. In fact,

Sparenberg,25 Pien and Strom-Tejsen,31 and Tsakonas and Jacobs41 treat the higher-order singularity, while

Pien, 3 0 Kerwin, 2 7 '2 8 Yamazki, 2 0 and Murray 3 3 work with principal-value integrals. Sparenberg 2 5

presents an analysis for both points of view.

B-EXPRESSIONS FOR VELOCITY AS
INTEGRALS OF FIRST-ORDER SINGULARITIES

Equation (3-21) for the perturbation potential consists of three terms

0= Os + OT+ tkv (5-1)
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In this equation Os is an integral over the surface of the blades corresponding to the lifting aspect of the

propeller

s = IJJ S-_ dl d (5-2)

and kT is also an integral over the surface of the blades; however, due to the blade thickness

Z-1

Tz--s01 b=O dil da (E3SB+ Sd d0 If-11 at,(5-3)

and Ov is an integral over the shed vortex sheet

OV=- f= O r(zo) dzo fN+3 da (54)4 7r bO TE -_,013
aTE

where rB (c1 (ay), Z) = F(•)

Ns is given in Equation (3-10) and

AO' ,is given in Equation (3-18)

In the following work, the expressions will be considered without the effects of rake or warp since

they are less complicated and permit comparison with results in the literature. The formulation with rake

and warp can be obtained similarly.

In design, the detailed geometry of the propeller is to be determined. Since this is so, the

position of the trailing edge can be chosen to simplify the integrals. With neither rake nor warp the blade-

27r
reference lines are the 0 b values (0 b =T b). If the trailing edge of the blade is chosen to lie on the

helical surface passing through this line, then in Equation (3-17)

U
•o: zo£ •(o- Ob) OTEh 0.< O ) (5-5)
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U
i.e., xTE =- 0 TE" Then Equation (3-18) reduces to Equation (4-4), etc. The expression for C reduces to

1 Z-1 R -0u a'
-,2 Ifzo) dzo _ ZO--x + -ui4 rb=O f ax 2z 0 o r

aTE(zO)

(5-6)

where r is given in Equation (4-6). From the results of Appendix B, the velocities computed from this

expression can be seen to equal those derived from the Biot-Savart Law for a bound vortex along the blade

trailing edge and a shed vortex sheet trailing downstream from it. The position vector of the trailing edge is

f = XTE(Z) i + ae.a(OTE(Lo) + 0 b) (5-7)

Hence a vector tangent to the trailing edge is

df dcXj TEdeb)+,(d dO TE
t = - = • iEea)TE 0b +
- d ddO OTE-+ Ob db

=XTEi+ ea(OTE+ Ob)+CZeo TE (5-8)

Thus the velocity is

1 Z-1 f R tx(r-X)

Z Jo (z°) dz°4 =0 0 r_=-[3

1 Z-1 fR n d dz
+- J dz ,d /d-y (5-9)

4 'r b=O dz0  
0 OTE

where I is given in Equation (B-10) of Appendix B. In the preceding integral, z0 is a dummy variable for

CY. As shown in Appendix B this form is the same as that found in the literature, and hence the detailed

explicit form used for the numerical analysis is not repeated here.

When the pitch of the blade-reference surface and the shed vortex sheet are the same, Pien 3 6

found that significant savings in computing time could be obtained by rearranging the limits of the infinite

integral so that it would need to be calculated only once. Naturally this left an integral over a finite
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region to be evaluated for each new position on the blade. For points everywhere on the blade except the

trailing edge, the preceding expression is a straightforward quadrature without 'singularities in the integrand.

When Pien's procedure is used, Cauchy principal-value integrals occur, but apparently these are easier to

handle than the repeated infinite integral.

The preceding expression for the induced velocity is usually modified to include the moderately-

loaded assumption discussed in Chapter 4 which consists of replacing the ý0 expression by the approximate

one for So + 'El' given in Equation (4-3 1), which is derived from lifting-line theory. Although an argu-

ment can be made for this approximation in lifting-line analysis, no justification is given for its use in

lifting-surface theory. In any event, only a portion of the second-order effects are considered with this

modification; see Section D of Chapter 3.

The expression for the potential due to blade thickness can be written

SZ-1 R V-c~ 
j E 1 ýIbO U2 + Z2 + 22 cos (dOp-9 1) dw " d~l (5-10)

Cj2*.) Lr-ioI

where

_r- sO1 = (x- l sin Pp) i_+ y + ' sin Ob+ +

S(O

+ -J Cos Ob + k_

Hence qT= V T is given by

C aETZ Z-lfoRb~ U2 7os:0:2p-22 f~ai '-°
!T fR + i•o s2  d f - d~l (5-11)

b0 0 c2  Lr-so 13

For points on the blade r -- s0 , only a principal-value integral must be evaluated.

Since this expression is the same as that found in the,. literature, it is convenient to make the

necessary changes to demonstrate the equivalence. The changes are that the blade surface is described by

Wo, 0 instead of t1, W, and that pitch P(a) instead of pitch angle •,p (a') is used. This is the

description used by Kerwin. 2 7 ,2 8 In addition, the term cos (ýp -03 ) is ignored, and constant -pitch is

assumed since the blade normal is taken to be £2,

For constant pitch and neither rake nor warp, the only component of velocity in the boundary

condition of Equation (3-27) is

v=vipoe2  (5-12)
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For points on the blade described by (r, 4S/,

•P(r)
x = r tan p Op(r) 0 =-

y - r sin (

z r cos q5

the component v can be written

R OTE
v(r, f 0 ( 21 )2+ 4C2 d fO o(, '0) GTdO (5-13)

0 OLE

where

V((E27U ()2+ a2 3F-Ti(zý, 0)= U -- 1(5-14)P(Za)127r Rf , , 0

and

P(a•) O-P(r) oi. P( a) •i b+0-

P( Z-1 27r - 2ir sin (b+O

GT = 2"7r ¢P ) 2 •p(b=O 02 2 312(Ec+ a)2 + r2 + •2 -2 wr cos + 0 -

(5-15)

Except for notation, this agrees with Kerwin's expression. Kerwin uses 2 ET for his thickness dis-

tribution, so there is also a difference factor of 2. When the pitch is constant, GT is a function of( 0 -

The remaining term to be examined is the integral over the lifting surface. The velocity from this

component of • is given by
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s= Os

Z-1 +os'(r-so)

I if S B (o) Vr 6( ) ds (5-16)

b 0SB

=_ZIJff rB I) ___ .- I ()

4- b-oJr sB+rrs°) _-Soir - ("-so)J ds

When r - so+ 0, the singularity in this expression is second-order rather than first-order as in principal-

value integrals; see Equation (2-19).

To integrate by parts, the gradient of the kernel in Equation (5-16) must be expanded and

rearranged

S rX s
13•} dLr-1 - \r ,.-s3}

But for an arbitrary vector A,

nX 7 XA) X V) X A- (L7 " E) -n "A)

Now, since
V -- s =0 =A1 0

the preceding expression becomes

a LL -11 - -i 3
In *(1 -s) lr_-s3 jr-s1

To actually perform the integration by parts, we determine that

L1r-s r-s
(nXVs)X r _ rB(nX Vs)X - +(nXVs PB)X_(n VJX L4_s3}= Ir-sl3 Ir-sl3

Hence the velocity is
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Is = Y if (•V( - xv7 rB) "_% 41r b=0 SB + r__s0la

(5-17)

S V r )I}ds+(ns X s) x FBrs3

One of Stokes' theorems is48

f ( X V)XA ds= cdX A

where c is the curve bounding s, and di is along the curve in the usual orientation. Thus the expression

for velocity is

- 1n+ X{ v( X 0 ds

I ~ ~~~ OS sr) r11

I-s 4:rb= fo S++•I-so
0s

Now rB is zero at the blade leading edge; and r(Z5) , at the trailing edge. The arc element along the

blade outline is

dl
dl =- dZ'

=tdW

Hence

qs -I(a* X V -i) ds
47 W ffSB+0 OS sr) f1

f J (zO )tX dzo (5-18)
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The line integral cancels a similar contribution from the trailing vortex sheet in Equation (5-9), and the sur-

face integral is the Biot-Savart Law with a vorticity distribution:

A n x vs IB

EnX(q+ - q-)

Since the conversion is general, it would also be possible to express velocities from the nonlinear

results of Chapter 2 in terms of a vorticity distribution. To interpret the results in such a manner, it will be

necessary to define an inner surface of the blade which has zero flow velocity. Then the vorticity will be

simply n X V¢. Since no further insight is provided with this approach, it is not pursued further.

The explicit expressions for the linearized velocity in the case of the general propeller geometry can

be found in a straightforward manner. Since the results will eventually be compared with equations found

in the literature, the geometrical restrictions appropriate for those cases will be made. These are that the

propeller is neither raked nor warped and that the pitch is constant. For constant pitch

N+

n 2

and for neither rake nor warp

/ 2×

Hence

A aRB _arB tlCos2 Pp a FB

Now since

FR-- / -r(,7,)d,7
ac 2(W,)

one finds

a.••~ tjlCOS2 ýppi

A= "},t- 17dr+ 'Y., e (5-19)

(a W 2, Co8
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This is the form of the vorticity vector required in the coordinate systems developed here. However, in the

literature it is more common to work with cylindrical polar coordinates (ZY, 0, x). In this system the

parametric representation of the helical blade-reference surface is given by

P
x =atan SOp 0 -

y =- "•sin 0 (5-20)

z = a'cos 0 )

For the surface coordinate system u1, u2 = , 0, the metric coefficients are4 3

-1 ~0

gii= (P 22 (5.21)

Hence for constant pitch, the gradient of rB in this coordinate system is

n X r Fe x B+ el arB

Now since

0

= B f (47JI2ý+ ýa22yd 0

B 2J,,

one finds

/0_ - 2 2+ a2 yd'O f_

flXVrB'VE2X ^tl+ C(0 LE ( )2 2Y d) ]n X PB =2 X am OLE

and hence

111A\J 0LE 'a2ydO e (5-22)

This is the same expression obtained by Kerwin, 5 1 although he used the result in a different

manner.
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Explicit formulas for calculating the velocity from the Biot-Savart Law are given in the next

section and hence are not repeated here.

C-COMPARISON WITH OTHER FORMULATIONS

In the past, linearized propeller lifting-surface formulations have been developed from three view-

points-a postulated vorticity distribution (Pien,30 Kerwin,26,27 and Murray33), an acceleration potential
(Sparenberg, 2 5 Hanaoka,3 2 Pien and Strom-Tejsen 3 1), or a velocity potential (Yamazaki 18 "2 4 ). Both

velocity potential and acceleration potential formulations are based on the equations of motion, while the

vortex distribution formulation is based on laws derived from the governing equations. Of course, all so-

lutions should be equivalent so the development is only a matter of personal preference.

The details of the formulation of the velocity-potential function are not given by Yamazaki. How-

ever, examination of the potential reveals it to be compatible with the velocity potential derived from the

acceleration potential. Such solutions are given in terms of the pressure difference across the blade (for

constant pitch propellers, this is equivalent to the radial component of bound vorticity; see the footnote

following Equation (3-24)) and an infinite integral to a variable point on the blade.

In the acceleration potential method formulated by Sparenberg, the linearization is on the basis of

only the axial component ofqo; other velocity components are assumed small relative to it. However,

since the propeller also has a rotational velocity, it is not clear such an assumption is justified. Hanaoka

linearizes about the total free-stream speed and converts his expression for the linearized acceleration po-

tential to one for the velocity potential. For steady flow, his Equation (3-8) is the same as the lifting

portion of Equation (3-21), when the pitch of the blade-reference surface and the shed vortex wake are

identical.

The formulation on the basis of the vorticity distribution is now almost classical. The vorticity

vector is specified on the body and shed vortex sheet, and the velocity distribution can be calculated from

the Biot-Savart Law. For a surface distribution of vorticity, the Biot-Savart equation gives the induced

velocity as

i r- A x(r-s)
S JJS dS (5-23)qi47r so lt_s13

where A is the vorticity vector, and So is the approximate blade surfaces plus the shed vortex sheets.

Across the shed vortex sheet

+ q- +

5a
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and the normal to this sheet is, (from Equation (3-18))

N - n -- - cos3 i + sin I e0 )
cos•- cos

hence the vorticity vector is

aF
A= n X(q+ - q-) - (sin i_ + cos of 0)

where tan J3=U

Since s = 10, the integration over the shed vortex surface is

1 Z-1 R dF d 00

5v - Z -bO (zO) dI dy (5-24)
47b=O 0  f 0 TE

where I is given by Equation (B-10) in Appendix B; this is the form given previously in Section B of this

Chapter. Thus this component of velocity is the same as that given by Pien, 3 9 Morgan and Wrench,14 and

others, except that this free-vorticity starts at the variable trailing edge and lies on the surface parallel to

the undisturbed free-stream velocity.

The bound velocity on the blade is now needed. Since most of the previous investigators have

derived equations appropriate for only constant pitch, we do also. This means that the zero-order normal

from Equation (3-10) is

n = £2

and

q+ - q- yl£ + oe-,+ #£2

where o is unknown, and y is given by Equation (3-24).

Hence the bound vorticity vector is

A= Yey+ ueI (5-25)

The explicit form of a will be found presently but now the velocity induced by this bound-

vorticity vector is desired:

1q"• z-l tR bO• cl (uel +'ye9flxr'-s0°)d
X I dR(t -fý)IX(-O

b-0 0 c2 C2
d13
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where so is given in Equation (3-9), which for constant pitch and with neither rake nor warp be-

COIliCS

s, S sin +oi +e-

where

e -sin ob+ . +cos Ob + k

Now for r xi + re/4,

f, X (1-1o) =(sin ýp Pi + Cos ýP o ) X I{(x-ýi sin ýpPi+ rer - w,

= sin pOp (r~e - ae 9) + cos pOp { (x-t1 sin Opp) ef'

+ (a- r cos ( 0 -¢)i}

eaX (f-S-o) = eaX (xlsin °p)i + rer - w-e- .

t, sin Op
=-( sin p s . - rsin ( +.

Co

Hence:

1 i1R a.C•C coslsp( 'p rCosO- )-r rsinO-•)
-f "a f 4dl-0

b=O 0 C2

Z-1 R Cl asin p sin (0 - 0)+ cos p (x - t, sin• p )Cos (0 -

-47 b=O fc2 itsO13

(5-26)
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",5iy (0-0) (x- 1 sin ýp )d

•~ - do ]'

L .Z-1 f R d -ClJ a [sin ýp (r - W-cos (0 0)+ cos ýp1 (x-t 1 sin ýpr) sin (0 -0)
q 41r~ JY.,S IL_1-

b=O - -o 2

(5-26)
-y (x- sin Op ) cos (0 - 0) Cont'd

Scos

where 0 o 0b+

r_13= { (x - t, sin ýp2+ r2+ D2 -2 r a5cos ( O- 0)} 3/2

In the literature it is common to work with 0 = rather than ýI" Since for "W= constant

0 cos 
pOp

the preceding velocity components become

I Z-1 R ad a7 OTdM Vacos Op (W-rcos(Ob+O- 0 ))-'rsin(Ob+ 0-)

=- J-. J dO
7r b=O f Cos ip .r_.Soi3

(5-27)
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- 4r b=CO s

OTE

oLET a {N °(sinp asin 0 b + 0 - + cos Opp (x - Jtan pp 0) sin 0 b + 0- .())

- sinOb + 0 - 0) (x - tan Op 0)
+ "dO

Ir-so13

1 Z- 1 •R adZ
q-"•¢=4-r b--° f 0 os ýOp

0 TE

f.fOL a{sin ýOp(r- Wcos(Ob + 0- ))+cossOp(x - wtan op 0)sin' 0 b + -0

7y Cos O'b + 0 - 0) (x - a tan •o•0)

cs +- d 0 (5-27)

] Cont'd

where

I-So13 =(x - -tan ýOp 0)2 + r2 + a2 - 2 ir Cos ( Ob + 'O 312

In the literature it is also common to break this surface integral up into two components

q=ql+q 2  (5-28)

where
1 Zilrc elXir:-S'o '")

SB I "0 13's (5-29)
147 8 b=O SB
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I e• f zX (1-10)
.92  Tr- I~J 1 (5-30)

-b -O SB,+ I-r-.13

and combine ql with the integral over the shed vortex sheet. When this is done it is customary to take the

pitch angle of the shed vortex sheet and the blade-reference surface as the fOi angle computed from lifting-

line theory; this corresponds to the hydrodynamic pitch introduced in Equation (4-30).

When ql andqv are combined, one has the form:

I z-i ~ f _-Xo_-
Y J d5 J hdO (5-31)

b=O 0 'OLE

where

A= ae

s so OLE < 0 <oTE

h I
cos ýPop

ar
A_= - - (sin 3i + cos O3e 0

s =-0 0 > OTE

h= -

cos (3

Because of the form of this equation it is also customary in the literature to speak of both ql and qv as

being induced by a trailing vortex system. In fact some authors derive their equations, postulating that the

trailing vortex system starts on the blade.

Because of this confusion regarding the a component of bound vorticity, it is not surprising that

the literature contains several expressions for it. In order to determine a, one uses the property that

,a distribution of vorticity must satisfy the equation

v. A= 0
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For a constant-pitch helical sheet, with the vorticity vector given by the component y in thc radial

direction and the component o directed in the surface perpendicular to the radial direction and tangent to a

cylinder, one can determine the metric coefficients, Equation (5-21), and reciprocal unitary vectors4 3 and

thus find the equation for divergence on the blade

IA= (+p 2 2 ()+ (5-32)

/()2 +Z•2 af 2r

where P/2ir = c tan ýpp

and on the shed vortex sheet

VoA=
cosf3 0 0

The expression in the wake is automatically satisfied since F r(a only. Now one must find the form of

o on the blade.

From the first expression, one obtains

0

o(a 0)=-27
OLE

where f(i) is the integration "constant." The value of this constant of integration is obtained by requiring

that the vorticity vector not run off the leading edge of the blade into the irrotational fluid. That is, if t

is the tangent vector to the leading edge

tXAI =0
0== OLE

Since t=-d

.* . d OLE dOLE

\LII dd

one finds that

Sd OLE
f =Y "rOLE, a)

cos •p d-
or that
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-y. do (5-33)af yCos

0 LE

aco

This is the expression obtained by Kerwin. 2 7

Pien 3 0 and Murray 3 3 state that:

0LE

where OTE

r'(ay) f r a(a, 0) d 0
OLE

Thus the metric coefficient is absorbed in the definition of r(a) which must be

w~( Oh' ly(a,0)
Cos

where y (W, 0) is the radial component of vorticity.

Pien and Murray do calculate the velocities with an expression like that for :+ 4v in Equation (5-

31). Kerwin 2 7 first integrates the value of au/a•on the blade from 0 to -o, then integrates that value

over the blade surface. In a later paper, Kerwin and Leopold, 2 9 change the formulas to the form of

Equation (5-3 1).

D-EXAMINATION OF RADIAL COMPONENT

IN BOUNDARY CONDITION

Although the formal development of the lifting-surface and lifting-line equations is important

academically, it does not in itself contribute to improved propeller designs. However, the lifting-surface

formulation does explicitly consider the radial velocity component in the boundary condition used to

derive the camber distribution in Equation (3-27). Since this term might contribute significantly to the

engineering aspects of propeller design, some idea of its effect on the computed camberline must be found.

In order to examine the effect of this term, a rather crude approximation will be made for the radial
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velocity. The only radial velocity components found in the literature are those calculated by Ilough and

Ordway.57 Their results are for circumferentially averaged velocity components due to a lifting-line with a

circulation distribution' they call approximately optimum; for the radial component they do not actually

compute values at the lifting line. Nevertheless, we use these values because no others are available.

Comparison will be made with the maximum camber ratios calculated by Cheng 5 8 from the formu-

lation of Pien.3 0 Comparisons of the averaged axial velocities for the optimum circulation distribution are

reasonably close to those computed for the arbitrary circulation distribution actually used in the calcu-

lations by Cheng. If we assume the radial velocity component is approximately constant and approximately

given by the values given by Hough and Ordway at the point closest to the lifting line, then the camber due

to the new term is parabolic with amplitude for symmetrical blades

(C1-C(2 sin 2 9yp dmpp\ wv

max=-_TRI

+ 2
U

(5-34)

1 (cl-c 2  dp cos2 pp woya3)
-- I- R -R

4 \2R / d 21ra U

In the calculation method proposed by Pien, 3 0 Op is Pi given in Equation (4-51). Cheng tabulates these

values as well as the chord-to-diameter ratio. The following table lists the maximum camber computed by

Cheng for his propeller 3916A and the increment computed by using the preceding equation, both for an 8-

inch-diameter propeller

5 7Hough, G.R. and D.E. Ordway, "The Generalized Actuator Diik," Developments in Theoretical and
Applied Mechanics, Pergamon Press, Inc., New York, Vol. II, pp. 317-3.36 (1965).

5 8 Cheng, H.M., "Hydrodynamic Aspect of Propeller Design Based on Lifting-Surface Theory-Part I-
"Uniform Chordwise Load Distribution," NSRDC Report 1802 (1964).
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Cheng, 5 8  AzEcm
R Ecimax, Figs. 7 and 16 cmax

0.3 0.088 in. 0.0002 in.

0.7 0.034 in. -0.002 in.

The change in sign in AEclmax reflects a change in sign of velocity component along the radius.

For this propeller, the change of camber is negligible for the "'/R = 0.3 radius. This is because of

the small slope of the pitch curve in this region. For the 0.7 radius, the change in camber is about 6 percent

of the contribution from the conventional calculations and would be significant for propellers of larger

diameter.

Additional information about the importance of the radial component can be surmised by con-

sidering the effect of rake or warp. The effect of warp is especially important for improved cavitation per-

formance and reduced alternating thrust when operating in a wake, Miller 59 and Boswell. 6 0 To date, in-

vestigations have been conducted with skewed propellers for which the blade-reference line lies in the

helical surface which passes through a straight-line element in the x = 0 plane.60 For such pro-

pellers the normal to the reference surface NO would contribute a radial term approximately like that

described for the camber effect; however, since ý1 is measured from x = 0, an angle-of-attack term would

also occur. Such propellers have blades extending considerably downstream. This overhang requires that

the propeller hub and the rudder be separated more than normal. If instead of skewed propellers, only

warped propellers were utilized, this problem would not occur. Hence, the effect of warp on the design

will be considered now.

Skew is usually given as a warp angle with the understanding that the blade-reference line lies in

the helical reference surface through a 0b line. The warp angles tabulated by Boswell60 are

approximately:

w{~ - J.~UB)( -CDHUB)

where 0s is the designated amount of "skew."

5 9 Miller, M.L., 'Experimental Determination of Unsteady Propeller Forces," Seventh Symposium on
Naval Hydrodynamics, Rome (1968).

6 0 Boswell, R., "Design, Cavitation Performance, and Open-Water Performance of a Series of Research
Skewed Propellers," NSRDC Report 3339 (1971).
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That portion of the boundary condition of Equation (3-27) to be examined is

alixc _dW W(•l, 0, )

S- Sil (5-35)

If tile preceding expression for warp is used, and if the radial component is again approximated by

w*(a, then warp contributes an angle of attack (or pitch correction) to the camberline shape. The

tangent to this pitch angle is given by the preceding expression

dW-tan {Aat) = ZZý sin •Op U+
da P a2 n2

For Os =21r/Z.

- tan (Aa) = F w*iw)
SR \ Zl /VU2 + n2 a2 'HUB

1-
R

For lack of other data, we approximate the ýOp values at the warped line by the 0i values for a straight

blade-reference line.

By applying these approximations to the five-bladed propeller considered previously, the pitch-angle

corrections would be

- Act in DegreesR

0.3 -0.2

0.7 0.5

These corrections are considered significant.

Because of the change in sign, the preceding corrections might tend to cancel in their effect on

thrust. However, they could be important for cavitation performance which is one of the main reasons for

designing a propeller rather than selecting one from a series.
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E-DESIGN PROCEDURES (HYDRODYNAMIC)

In current design techniques by Morgan, Silovic, and Denny61 and Kerwin and Leopold, 2 9 a combi-

nation of lifting-surface and lifting-line results is used. Briefly the mechanics of this procedure are to use

the second-order, lifting-line equations for the outer flow to find the induced velocities at the blade-

reference line, circulation distribution and thrust. The inner flow is ignored, and hence an integral equation

must be solved. This is usually done by assuming either a tan 0i or circulation distribution and scaling the

chosen quantity to eventually give the required thrust (or power). The resulting circulation distribution is

used to scale the chosen radial component of vorticity y; see Equation (3-31). The lifting-line induced

velocities are assumed to be approximately the average chordwise results from a lifting-surface calculation.

They are used to approximate the velocities induced by the shed vortex wake and are used to give the

reference surface lp/w. Hence everything is known to compute the lifting-surface results, partially taking

into account second-order effects. This procedure has worked remarkably well for the performance of con-

ventional propellers, Cox.3 7 On the other hand, it seems to be difficult to design a bad propeller since

even the earlier, semi-empirical design procedures such as Hill's62 produced propellers which developed the

desired thrust. It is in other areas, especially cavitation inception, that the more refined analysis embodied

in the lengthy lifting-surface calculations are expected to have a distinct advantage. Unfortunately, few ex-

perimental comparisons of the type necessary to judge the adequacy of the various hydrodynamic theories

are found in the literature. However, when cavitation occurs first at the leading edge for the design

condition, the design procedure has not been sufficient to produce the specified chordwise pressure distri-

bution. Such is the case with a recent series of skewed propellers.60 Some differences in the numerical

results of various lifting-surface formulations are given by Johnson. 6 3

Although the combination of lifting-line and lifting-surface results is quite practical, it is not

entirely consistent. Specifically, the expansion for the circulation distribution in the lifting-line analysis

can hardly be expected to apply for F-+ 1. However, for elliptic wings, Van Dyke 2 ' 3 has shown that the

lift computed from the integral equation is quite close to the exact value over the entire range of aspect

ratios. Thus the lifting-line results might be adequate for parametric studies since calculations can be

quickly done. For final design, though, the lifting-surface equations should be used since they will give a

geometry better able to meet design conditions.

Another utilization of the lifting-line equations is to approximate ýpp(a) and the position vector of

the shed vortex sheet. The determination of the shed vortex sheet for the lifting-surface analysis by using

6 1 Morgan, W.B. et al., "Propeller Lifting-Surface Corrections," Society of Naval Architects and Marine
Engineers Transactions, Vol. 76, pp. 309-347 (1965).

6 2 Hill, J.G., "The Design of Propellers," Society of Naval Architects and Marine Engineers Transactions,

pp. 143-192 (1949).

6 3Johnson, C.A., "Comparison of Propeller Design Techniques," Fourth Symposium on Naval Hydro-
dynamics (1962).
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(he lifting-line induced velocities is probably not accurate near the lifting surface where it is most important;

in any event, the current utilization is only an approximate second-order correction for a portion of the

second-order terms. Other second-order terms should be calculated to determine their magnitude also.

To use the consistent first-order lifting surface calculations, the following procedure is recommended.

In the first-order theory the approximate position of the shed vortex sheet is independent of the induced

velocities and is known. The blade-section pitch angle ýp p is first approximated by the 0 angle. The mag-

nitude of the circulation distribution needed to produce the thrust can be calculated from Equation (3-23).

The propeller geometry can now be calculated. The angle of attack of the section can be used to define a

new ýpp, and the calculations can be repeated. The second-order results could also be calculated if

necessary. In particular the second-order thrust in Equation (3-29) could be calculated from the first-order

data so that an adjustment in the circulation could be made to meet the given thrust or some other criteria

used to iterate for the final solution.

Obviously, these alternative procedures would be more involved than the presently-used techniques

but unless an entirely consistent approach to the design problem is taken one does not know the degree of

approximation involved in the present calculations or what potential exists for design based on the lifting-

surface formulation.

In the equations for design the chordwise component of velocity difference (or the spanwise com-

ponent of vorticity) "7 is assumed to be given as well as the total bound circulation curve F(a'). This is

compatible with information which a designer should supply for a propeller designed from cavitation con-

siderations: Two general criteria for the avoidance of cavitation are that no suction peaks occur on the

blade and that the shed vorticity be distributed as uniformly as possible in the spanwise direction. The

first conditions met by selecting the functiona form of -y; the second, by the functional form of f(Z),

since the gradient of r gives the shed vorticity. The number of blades and the blade-area ratio are also

part of these considerations since the average pressure times the blade area determines the load which must

be sufficient to produce the required thrust.

F-RECOMMENDATIONS

Obviously the first recommendation is to include the radial velocity component in the boundary

condition for propellers designed with variable geometric pitch, warp or rake. Although the inclusion of

this term is not expected to have a significant effect on the thrust, it could lead to propellers with better

cavitation performance. Since cavitation considerations are one of the main reasons for designing a pro-

peller rather than selecting one from a series, and since a crude analysis shows the term to have a significant

effect, detailed numerical calculations should be undertaken.

Since heavily-loaded propellers are becoming more common in practice, the second-order lifting-

surface formulas should also be programmed for design calculations. One of the interesting aspects of such

investigations would be determination of the position vector of the lines of constant circulation in the shed

vortex sheet. Another interesting outcome of these calculations would be an evaluation of the magnitude of
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the second-order terms. Presently, it is assumed that the shed vortex sheet needs to be described better

than by ý0. Qualitatively this is saying that the infinite integral of 0 (e) over the shed vortex sheet

produces a zero-order contribution. The proposed calculations would evaluate this assumption.

The formal analysis described here should also be extended to include vorticity, i.e., an axisymmetric

free-stream velocity, unsteady flow, and supercavitating propellers. Since unsteady flow with vorticity is the

standard operating condition of propellers behind a ship, these two are important areas of research.

SUMMARY AND CONCLUSIONS

The mathematical development presented in the preceding chapters has been based on the

equations of motion and certain mathematical relations which have permitted an exact formulation to be

constructed. Application of formal perturbation procedures has yielded linearized solutions appropriate for

numerical calculations. In Chapter 5, the velocities computed from the lifting-surface potential are shown

to equal those computed by the Biot-Savart Law. These expressions are then shown to equal those found

in the literature for the approximate geometrical conditions.

An examination of the literature did not reveal previous explicit consideration of the radial

velocity component in the first-order lifting-surface perturbation problem, Equation (3-27). Of course,

other investigators realized that such a term occurred for variable pitch propellers but did not examine the

consequences of neglecting it for arbitrary pitch distribution. For the example considered, the contribution

of this term was as much as 6 percent of the camber ratio determined by the conventional analysis.

In the lifting-line analysis, only propellers without rake and warp were considered. For these

propellers, the two-dimensional sections were defined normal to the straight blade-reference line. However,

to the order of the approximation considered, they could equally well have been considered as defined on

cylinders as was done in the lifting-surface problem.

A method of design based only on the lifting-surface formulation has been discussed. This pro-

cedure makes no use of the lifting-line results and would involve greater computing effort since an

iteration is appropriate.

Extension of the method utilized in this work to the problem of unsteady flow and shear flow is

recommended. In addition, numerical results should be obtained. The numerical results could include wake

trajectories for the shed vortex sheet.
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APPENDIX A
POTENTIAL FOR LIFTING LINE DERIVED FROM THE

BIOT-SAVART LAW

Traditional propeller lifting-line theory (Moriya,'Il Lerbs,l 3 Morgan and Wrench, 14 ) evaluates the

velocity induced by the vortex system from the law of Biot-Savart. The vortex system considered is one for

which an individual vortex is an element of circulation of strength dI"/dashed at radius ('; then by the

conservation of vorticity this element remains bound in the line and leaves it at the axis of rotation. It is

not clear from the literature how to interpret the vortex system when the lifting line extends from a finite

radius off the axis to the propeller tip. (However, see Appendix B.)

Lifting-line theory for planar wings, Ashley and Landall, 4 7 uses a model which consists of an

elemental horseshoe vortex of strength r. This is composed of two free vortices of equal but opposite

strengh a distance Az apart, joined together at the blade by a bound vortex element of the same strength.

Such a system is shown in Figure 8 for a propeller lifting line.

Az

Figure 8 - Vortex Element
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A sum of these elements distributed along the radius of the lifting line then approximates the

vortex system. In Ashley and Landahl, 4 7 the potential for elements an infinitesimal distance apart is

derived by integrating the potential of a doublet over the length of the element. Here it will be derived*

from the Biot-Savart Law applied to the element. The path of integration is shown in Figure 9.

/

Figure 9 - Path of Integration

Let this path be L. The velocity induced by the element is

L df X I (Al)
L-

One of Stokes' theorems for vector integration is

d Xd X ff(EXV)Xuds (A2)

*See also Lamb 64 and Kochin et al.4 4

6 4 Lamb, H., "Hydrodynamics," Sixth Edition, Dover Publications, Inc., New York (1964).
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where s is an area bounded by the curve c. Thus

r-- t r--s

(V'X7X ds (A3)fL Ifr-113 fs Ifr-sl3

where s is the area bounded by L. But

r-s r-sr-
(anX 7s)X Vrl t S V • •n -n(A4)

Hence, since V (r/r?) = 0, there remains

(nX Vs)X• - Vr - - (A5)Ir_ -s l3 I r -sl3

since n = n(s) only.

Thus the induced velocity is

_{-• r *'r n)ds

(A6)
= -- *r • n ds

Hence, by definition, the potential is

r r-s nds (A7)

See Lamb64 Equation 4, page 212.

The shed vortex sheet is envisioned as being composed of a radial distribution of these elements so that the

distance between elements goes to zero and the width of an element goes to zero. In this limit the vector

element of area becomes the negative of that in Equation (2-48):

/ý q
Sds - - - dz0 dct

alO az
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and the potential for the total system becomes

z R 0LI
-= f ,(zo) dzo ( - da (A8)

b- 0 ob ir-ýi3  
aT Z

When the zero-order position vector for the trailing vortex system is substituted into Equation (A8),

Equation (4-5) is obtained.

As an application of Equation (A7), the potential of a circulation element for planar wings can be

derived. For wings, the approximate location of the lines of constant circulation in the shed vortex sheet

is on the x, y-plane at constant y values. Hence

n ds - k dxAy + O(Ay 2 )

and

rAy j z dxo + O(Ay 2 )

41 r fp' (~o2+(_o 213/2

r AY) Z~ X Z

+ 2 (A9)

4r(yy 0)2 + z2  L I2+'2 (,,oý+ 2]

which is Equation (5-35) in Ashley and Landahl. 4 7 This can be rearranged to give

pAy z (x 2 + (Y-Yo 2 ) + z2)1/2 + x

4r (x2 + (y-yo)2 + z2) - x2 (x2 + (y-yo)2 + z2)112

+ O(Ay 2 )

pAy z1

47r ix 2 + (yyo)2 + z2] 1/2 11 [x2 + (y-y 0 +2 + 12

+ O(,Ay 2 ) (AlO)
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which is the form derived by von Karman and Burgers (p. 128),65 by Truckenbrodt, 6 6 and by Friedrichs

(Equation 15.4).1

Returning to the propeller problem, one obtains Equation (4-5) by substituting the zero-order

position vector of curves of constant circulation from Equation (4-3) into Equation (A8). Since only the

kernel of Equation (4-5) is of interest, it can be considered alone:

Z-1 -° [-•- (-'-a •- 11

G(r,zo) = J, f _ o da (Al1)
b=O 0 Ir-f13

and the zero-order approximation to G is

G(fz°) -- -° + o'

(4-6)

r=Vx- U-)2 + a2 +zo2- 2 zO acos( 0 _ - 6 b)

A similar integral has been evaluated in the determination of induced velocities at a lifting line. For the

induced velocities at the lifting line, Moriya1 1 was able to integrate the expression analytically to obtain an

infinite series of products of modified Bessel functions. Although the first impression is that replacing an

infinite integral by an infinite series is not much of an improvement, Lerbs1 3 showed that the series could

be approximately summed and thus calculations could be quickly made. An excellent explanation of the

integration process for the induced velocities at a lifting line and the numerical approximation to the series

is given by Morgan and Wrench.1 4 Included in that article is an improved approximation for the series

summation which was developed by Wrench.

The rather circuitous method discovered by Moriya will be applied to the integral in Equation (4-

6). Unfortunately, the kernel cannot be evaluated at an arbitrary point; however, the form far downstream

is found, and it is demonstrated that velocities from this expression are twice those at the lifting line as

derived from the Biot-Savart Law, as would be expected.

The expression for G(r,zo) is given by Equation (4-6). From the Lipschitz integral, Watson, p.384, 6 7

one obtains

6 5 von Karman, T. and J.M. Burgers, "General Aerodynamic Theory-Perfect Fluids," Vol. I'I of Aerodyraric

Theory, edited by W.F. Durand, Springer; also reprinted by Dover Publications, Inc. (1963).
6 6 Truckenbrodt, E., "Das Geschwindigkeitspotential der tragenden Fliche bei inkompressibler Strldmung,"

Zeitschrift fur angewandte Mathematik und Machanik, Berlin, Vol. 33, pp. 165-173 (1953).

6 7 Watson, G.N., "Theory of Bessel Functions," Cambridge University, England (1944).
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J= f - Ix 9 OtVW- 0 z
-- eJdt z - 2z 0 acos (0 - 0b) dt (A12)

r
0

From one of the addition theorems, Watson,6 7 p. 128,

Jo(t Y 2 + z02 - 2z0o acos (-0 -- 0 b)

00

= I k, Jm(ta) Jm(tzo) cos (0 - a) (A13)

m=0

where kmi is Neumann's factor, (km = 0, in = 0; k = 2, rn > 0). If one assumes uniform convergence for

the integral, the order of integration can be switched and one obtains

G(r, z0) = ktlk J7(tcw) J7(tzo)Wm(j'r,z o ,t) dt (A14)

nz=O 0

where

zm- + Uf e- ) d7 (A15)

b=W 0

Two cases occur, one for x < 0 and one for x > 0. For x < 0 the positive sign is used. For x > 0, two

regions exist, one for -y <- and one when it is greater. Only the case for x > 0 will be considered since
U

it permits the form of the potential far downstream to be obtained. Thus for x > 0

m ,Zot) U a - xt e
O-•x+ t• zo o+ 0) e f 2os m(O0 ' Ob) d7

b=Oo U 0

+ Xt 00 e -"- cos m (0 -Y O b) dyf (A16)

U
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The integrals appearing in Equation (A16) can be found by integrating by parts until the same expression

occurs again and then by rearranging the equation. The resulting expression for9Zm is

_?m az0,t) -2z0O cosm(O- 0 b)

(b)2 ft+m2 L 0

/ZO 2m Urn E_] 2(m -EUt

+ --- + sin m( 0 - 0 -2 +-0 U 2

sin O--0 U( 0 (A 17)

Thus )
Z-1 Ut/ E2 (- -z 0 t •cosm (- 0 b

Gfzo= f km Jm(t Jm(tzO) eu zt )
m=O b=O 0 2

* Z 2sinUm )xt (A18)+ + sin(0O- Ob) - 2sinn m 0-U- 0 b) I(t
ý-U-U

The portion of the integral involving the exponential disappears when the form far downstream is examined.

The remaining portion of the integral can be integrated using a result on page 429 of Watson. 6 7 The

resulting expression far downstream is

G2E2r'Zo) --- XU I ZO Ekm sin m 0 - - I A (A19)

b=O m=0

where Am is a combination of modified Bessel Functions
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Im ~ n) Km z >"

A- ~ " ((z U~~'

Km z0 <ý (A20)

The expression for • far downstream is

R

f-- r(zo)Go,(r,zo)dz0  (A21)

0

which can be integrated by parts to obtain

I f Rd F fo
47 0o dP lZo

After some manipulation, one finds

R Z-1

f z 0- 2 j2 km.sinfm ---- 0b)AmdzO (A22)
0 0 O m=O

where

~2J~m)~ (om)

The expression for the axial velocity,"'-, at 0 -* 0, x -* 0 can be easily obtained. After summing over b, the
expression is

SZ•/ "R d n Zzgz 0

z pzuf mF__

u'z m -d- k Ak mZ (A24)

0o dz0  m--0•

Tis is twice the value of the axial velocity at the lifting line as determined from the Biot-Savart Law, as

expected.
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An expression for the portion of the potential involving the exponential integral can be obtained by

expressing the Bessel Functions as infinite series. The integral then involves a triple infinite summation of

terms with an integral now of the form

f "o e-at

0 t2+q2

This expression can be integrated; see Gradshteyn and Ryzhik p. 313, 3.356(1) and (2)68 in terms of sine

and cosine integrals plus another finite summation. The resulting expression is quite cumbersome and is

therefore not given. No use was made of it in the analysis.

6 8 Gradshteyn, I.S. and I.M. Ryzhik, "Tables of Integrals Series and Products," (Translation of the Fourth
Edition, Edited by A. Jeffrey), Academic Press, Inc., New York (1965).
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APPENDIX B

INTERMEDIATE EXPANSION OF OUTER POTENTIAL

Equation (4-32) states the second-order potential for the outer flow. This expression is valid for a

fixed point in the flow field as the parameter F, equals chord-to-diameter ratio, goes to zero. Thus the outer

flow consists of a singularity system distributed along the radial lines 0 b, 0 < a< R.

There are only two essential systems of singularities: one from the circulation distribution and one

from the dipole distribution. The second-order contribution to the circulation will be included in the

single integral involving the circulation. The two integrals will be 01 and 02' where 01 is given by

Equation (4-5), and 02 is given by Equation (4-33). The 01 term will be considered first.

Since considerable difficulty was encountered in an attempt to expand the potential function for

the lifting-line, the velocity expression was expanded and from it the expansion for the potential was con-

structed.

In Appendix A, the velocity from the Biot-Savart Law was shown to be derivable from a potential.

Now it is convenient to return to the Biot-Savart Law in order to find the intermediate expansion. How-

ever, some rearrangement is in order before the appropriate form for expansion is obtained. The vortex

system is envisioned as composed of a distribution of elements shown in Figure 8 along each of the lifting

lines. The width between the free trailing portions of a vortex element is constant for all elements, and the

elements are infinitesimally close together. The path ?onsists of the segment along the 0 b lines and the

two free-trailing paths. Two adjacent trailing elements then have a common path of integration. Hence the

total induced velocity for N of these elements is

Z-1 N n r - zoe_(0b)q= -- - I ýOb)X d zob=O f If_ - zo (O b13
b~=0 = Zn 1ze(ObI

N p n - r1n+1 0o n
2" 47rj dl X n (B1)

n=O Ir-0n

where F0=O N+1 =0

In is the common path between the adjacent n and n+1 trailing vortices.

In the limit as AZ - 0, and the distribution of circulation becomes continuous with F(0) =(R) 0,

the expression for the velocity becomes
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Z-1 ROb1 • 7 f F(zo) r - zoe"Z•( 1 Xe"(b ~

47 b- Ir - zo E_0 (O h)d z

b=O 0(12

(B2)

Z-1 R d ___ r- d
1 fZ dzo - -Xd

4rdz 0 f- 
3

h=O 0

Hence the first-order velocity distribution results when F I )F(1 (zO) + and 0 + " are sub-

stituted into this equation. Since

U (83)

_o=Zoe 0)O+-( 0 bb)

one finds

d e_- U

dO +-dO

S(zo C0 +-' i) dO

and since

•0 =oI -2 +- Ob + +z 0  2 ý5z 0 cos( 0 - a)

one finds

0)X d 0 -- (y + zo sin a) - zo os a (x - -( Ob))

+ - (z - 0ocos a) +z sin a(x -- (a - 00) L

{Zo.Cos(O~c)~zo2}.ida (B3)

Hence
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SZ11 fR r -_wsin(0 - Ob)L-xcrxos Ob--xsi' Obk

S b=O 0 o x 2 + (y + Zo sin Obý + (z - z0 cos Ob) 3 /2 d

O (13(B4)

Z-1 R [00o-X-[ d C+ I df o dr f
47b 0 b [(x0--( 2- + 2 + z02- 2 z0 cos (0- a)/312

Consider first the expression from the bound vorticity. To find the intermediate expansion one substitutes

the intermediate variables into the expression and rearranges it into an asymptotic sequence. By inspection

of the denominator, one can see that a Taylor expansion is appropriate, except for the b = 0 lifting line.

Thus

R=
R" xgj_+gyi

q-B(gx5'g-Yiz)-=--{J F(O-g f2+2+Z Z 1/dz°
YB 9 93; z)= Tr7f r(zo -[g 2 (X2 +;2) -1 (z _ z oj 3 12  z

Z-1 R z sin 0b d zo7-- .f r(zo) 231
b=1 [(z0 s Ob)2 + (z - cos Ob) 2 131 2

+ 0 (Fg) (B5)

By symmetry the second term cancels, i.e., sin 01 = - snz 1, etc. The first integral can be expanded

by a binomial series in each region bordered by (z - Zo) = g2 (52 + 52). The result is given by Ogilvie,

Equation (2-43)54

9B(gc,g.YZ) =- + 0(Fg) (B6)
27rg !Z2 +2

Temporarily we convert to outer variables

•r(z) y i - xj

9B (x, y, z) = + 0(F) (B7)

and note that V tan- ly ,-i-xI hence
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B (x, tany-y + O(F) (B8)
27r x

From which one can conclude that, to within a function of z, the expansion of 0 contains a term:

, , - I 2
xgyz) tan- -+ O(g ) (B9)27r

due to the bound vortex.

Now the second part of the expression, the velocity due to the trailing vortices, must be

determined. Letting y = a - 0 b, one finds

Z-I R
q_(, ,z)=-Y• f d ZO d 7(B 10)

!T(X, Y,4z) X4dz 0  !dy Bb=O 0 0

(z 0Ocos ( 0 - 'y- Ob) - z0
2 )i

U U
+ / -•(z - zo cos + Ob) + zo sil (Y + Ob) (x - - Y)/ _

U U
-f-• (y + z 0 sil (+ Ob) + zO cos (Y + 0 b) (x - - y)/ k

I=

/(~ U2 ~y+ Sfl(7 o))2 + (z -o cos (+ 0)) 2I-3 12
[(x- + +zo sill('Y + 0b 2+z-oOS

Since the denominator is of positive definite form, it has a zero only for x = = 0b = Y 0, z zo. As

shown by Moriya11 and Morgan and Wrench,14 the velocity vector, as x = g • and y = g 3 go to zero, is

found to be

+ (1) (u) (1)q T(gx, gy, z)=ýua '+ cut i+•z k HOT B

where

Z-1 R 00
(1) f dr f Hi(z,zo,' )dy) dy

"ui (z) dzo U
4r 0 0 2)2 + z2 + z 02 - 2 z z0 cos ('y + 0 b312
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with

azzO, Y) ZO COS (Y + 0b)) ZOt

U/it (z, zO, 7}-/z - z()cos (7 + 01)) - YzO Sill (7Y + 0/,)/

U zo0

Hz (z, zO, )=- [sin (7 + 0 b)-- y cos (7 + 0/)) z0

and where the bar through the integral means the singular point is excluded. Except for notation, these are

identical with the expressions given in Equations (11) through (13) of Morgan and Wrench, 14 Equation (7)

of MoriyaI I and the equations in Appendix 2 of Lerbs.1 3 As shown by these authors, when U/l2 is con-

stant, the infinite integral can be performed analytically for the axial and tangential component of velocity.

From the previously described form of the velocity vector in the intermediate region, one con-

cludes that the expansion for the potential due to the trailing vortices has the terms

z

g +j u )+• (z dz (1312)

Hence the expansion for the potential due to the vortex system has the following form

" (9 3F 9 g 7' Y z) = OB + 0 T

-• (z) -1

=F(z;E)- Z tan I
27r -x

-(1) - (1),
+ g(xua +y uY.t )+H.O.T. (B13)

The function F(z;F) contains other unknown integration constants which are functions of z in addition to

the integral of U(z). The construction of the potential expansion from the velocity components is not

required since the matching could be done with the velocity components but it is simpler to work with the

one potential expansion rather than the i and / velocity components.

The expression for 02 valid in the intermediate region is now to be found. For the expansion of

this expression, it is not necessary to examine velocity components, since a direct expansion of the

potential is possible. Substitution of intermediate variables in the expression for 02 gives

Z-1 R[g p (zO)+(g=+zosill b) t2z0'dz0

, z)=-- I (B 14)

bW 0 [(gx) +(g9T+zosin V +(-os
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For b : 0, the expansion is regular, and a Taylor expansion is possible. The term independent of g in the

expansion is

Z-1 R zO Si" 0 b P2(z0) dz 0

b=1 [(zO sin Ob) + (z - zOCos Obpi

Because of the symmetry of the lifting lines, the summation of this term is zero. The term corresponding

to b=O has the following expansion; see Ogilvie,54 Equation (2.43)

R I ] dzo I i(Zz)+TP2 (z)

47r [gxl2j 2 2 1 __32_=

0 [(g ) (g + (z - Zo) g

+ H.O.T. (B15)

Hence

-2- - Jz + Pz + H.0. T. (B16)
C2 0•2 (g x, g Y, z) = 27g •2+•

21rg = .=

Combining this with the expansion of the vortex terms, one finds that the expansion of the potential in

the intermediate region has the form:

F(z/ =
~(gg3,zF 0 Z;E-E tan-1Y0 (g xT' g yý' z) = Fo (z"'j) - - tan- x

(1) - (I),

+ H.O.T.
21rg =2 +=2

This is the expression stated in Equation (4-34).
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